Introduction

Le programme se présente de la manière suivante : dans la colonne de gauche figurent les contenus exigibles des étudiants ; la colonne de droite comporte des précisions sur ces contenus, des applications ou des exemples d’activités.

Les développements formels ou trop théoriques doivent être évités. Ils ne correspondent pas au cœur de formation de ces classes préparatoires.

La plupart des résultats mentionnés dans le programme seront démontrés. Pour certains marqués comme « admis », la présentation d’une démonstration en classe est déconseillée.

Les travaux dirigés sont le moment privilégié de la mise en œuvre, et de la prise en main par les étudiants des techniques usuelles et bien délimitées inscrites dans le corps du programme. Cette maîtrise s’acquiert notamment par l’étude de problèmes que les étudiants doivent in fine être capables de résoudre par eux-mêmes.

Le symbole ▶ indique les parties du programme pouvant être traitées en liaison avec l’informatique. L’enseignement informatique est commun à l’ensemble des filières des classes économiques. Le logiciel de référence choisi pour ce programme est Scilab.
Table des matières

A - 1ère année : Généralités 3

I - Raisonnement et vocabulaire ensembliste 3
 1 - Éléments de logique .. 3
 2 - Raisonnement par récurrence et calcul de sommes et de produits 3
 3 - Ensembles, applications .. 3
 a) Ensembles, parties d’un ensemble 3
 b) Applications .. 4

II - Nombres complexes et polynômes 4
 1 - Nombres complexes ... 4
 2 - Polynômes ... 4

B - 1ère année : Analyse 5

I - Suites de nombres réels 5
 1 - Vocabulaire sur l’ensemble \(\mathbb{R} \) des nombres réels 5
 2 - Exemples de suites réelles .. 5
 3 - Convergence des suites réelles - Théorèmes fondamentaux 5
 4 - Étude asymptotique des suites .. 6

II - Fonctions réelles d’une variable réelle 6
 1 - Limite et continuité d’une fonction d’une variable en un point 6
 2 - Étude globale des fonctions d’une variable sur un intervalle 7
 3 - Dérivation ... 7
 4 - Intégration sur un segment .. 8
 5 - Comparaison des fonctions d’une variable au voisinage d’un point 9
 6 - Dérivées successives .. 9
 7 - Formules de Taylor .. 9
 8 - Développements limités .. 9
 9 - Extremum ... 10
 10 - Fonctions convexes ... 10
 11 - Séries numériques .. 11
 12 - Intégrales sur un intervalle quelconque 11

C - 1ère année : Probabilités 13
TABLE DES MATIÈRES

I - Probabilités sur un univers fini
 1 - Généralités .. 13
 a) Observation d’une expérience aléatoire - Événements 13
 b) Probabilité .. 13
 c) Probabilité conditionnelle 13
 d) Indépendance en probabilité 14
 2 - Variables aléatoires réelles 14
 3 - Lois usuelles .. 15
 4 - Compléments de combinatoire 15

II - Probabilités sur un univers quelconque
 1 - Espace probabilisé .. 16
 2 - Généralités sur les variables aléatoires réelles 17
 3 - Variables aléatoires réelles discrètes 17
 4 - Lois de variables discrètes usuelles 18
 5 - Introduction aux variables aléatoires à densité 18
 6 - Lois de variables à densité usuelles 19
 7 - Convergences et approximations 19
 a) Convergence en probabilité 19
 b) Convergence en loi ... 20

D - 1ère année : Algèbre linéaire

I - Calcul matriciel
 1 - Matrices rectangulaires 21
 2 - Cas des matrices carrées 21
 3 - Systèmes linéaires .. 21

II - Introduction aux espaces vectoriels et sous-espaces vectoriels
 1 - Espaces vectoriels sur R ou C 22
 2 - Espaces vectoriels de dimension finie 22
 3 - Compléments sur les espaces vectoriels 23
 4 - Applications linéaires 23
 a) Cas général .. 23
 b) Cas de la dimension finie 23
 c) Matrices et applications linéaires 24
 d) Cas des endomorphismes et des matrices carrées 24

E - 1ère année : Informatique et algorithmique

TABLE DES MATIÈRES
TABLE DES MATIÈRES

I - Éléments d’informatique et d’algorithmique 25
 1 - L’environnement logiciel ... 25
 a) Constantes prédéfinies. Création de variables par affectation. 25
 b) Constructions de vecteurs et de matrices numériques. 25
 c) Opérations élémentaires .. 25
 d) Fonctions usuelles prédéfinies .. 25
 2 - Graphisme en deux dimensions ... 26
 3 - Programmation d’algorithmes et de fonctions 26

II - Liste de savoir-faire exigibles en première année 26

F - 1er semestre de deuxième année 28

I - Algèbre linéaire et bilinéaire 28
 1 - Compléments d’algèbre linéaire .. 28
 a) Changement de base ... 28
 b) Trace ... 28
 2 - Éléments propres des endomorphismes et des matrices carrées, réduction 29
 a) Vecteurs propres et espaces propres 29
 b) Recherche d’éléments propres ... 29
 c) Propriétés générales .. 29
 d) Réduction des endomorphismes et des matrices carrées 29
 3 - Algèbre bilinéaire ... 30
 a) Produit scalaire ... 30
 b) Espaces euclidiens ... 30

II - Fonctions réelles définies sur \(\mathbb{R}^n \) 31
 1 - Introduction aux fonctions définies sur \(\mathbb{R}^n \) 31
 2 - Calcul différentiel .. 32
 a) Dérivées partielles, gradient .. 32
 b) Dérivée directionnelle .. 33
 c) Recherche d’extremum : condition d’ordre 1 33

III - Compléments de probabilités couples et \(n \)-uplets de v.a.r. 33
 1 - Compléments sur les variables aléatoires réelles 34
 a) Généralités sur les variables aléatoires réelles 34
 b) Espérance et conditionnement pour les variables aléatoires discrètes 34
 c) Compléments d’analyse .. 35
 d) Compléments sur les variables aléatoires à densité 35
 e) Compléments sur les lois usuelles ... 36
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2 - Couples de variables aléatoires</td>
<td>36</td>
</tr>
<tr>
<td>a) Cas général ; indépendance</td>
<td>36</td>
</tr>
<tr>
<td>b) Couples de variables aléatoires réelles discrètes</td>
<td>37</td>
</tr>
<tr>
<td>c) Couples de variables aléatoires réelles à densité</td>
<td>38</td>
</tr>
<tr>
<td>3 - n-uplets de variables aléatoires réelles ; généralisation des propriétés de l’espérance et de la variance</td>
<td>39</td>
</tr>
</tbody>
</table>

G - 2ème semestre de deuxième année	42
I - Compléments d’algèbre bilinéaire	42
1 - Endomorphismes symétriques d’un espace euclidien, matrices symétriques	42
2 - Projection orthogonale	42
3 - Réduction des endomorphismes et des matrices symétriques	42

II - Fonctions réelles de n variables ; recherche d’extrema	43
1 - Extension de la notion de fonction réelle de n variables	43
2 - Fonctions de classe C^2	44
3 - Recherche d’extrema	44
a) Définition	44
b) Extrema sur un ensemble fermé borné	45
c) Condition d’ordre 1	45
d) Exemples de recherches d’extrema sous une contrainte quelconque	45
e) Condition d’ordre 2	46
f) Recherche d’extrema sous contrainte d’égalités linéaires	46

III - Probabilités : convergences, estimation	47
1 - Convergences et approximations	47
a) Convergence en probabilité	47
b) Convergence en loi	47
2 - Estimation	48
a) Estimation pountuelle	49
b) Estimation par intervalle de confiance, intervalle de confiance asymptotique	50

H - Travaux pratiques en 2ème année avec Scilab	52
I - Liste des exigibles	52
1 - Savoir-faire et compétences	52
2 - Nouvelles commandes	53
II - Liste des thèmes

1 - Statistiques descriptives univariées ... 53
2 - Statistiques descriptives bivariées ... 53
3 - Chaînes de Markov ... 54
4 - Fonctions de plusieurs variables .. 54
5 - Simulation de lois .. 54
6 - Estimation ponctuelle et par intervalle de confiance 55
Dans tout ce qui suit, K désigne exclusivement R ou C.

A -1ère année : Généralités

1 - Raisonnement et vocabulaire ensembliste

1 - Éléments de logique

L’objectif est d’acquérir le vocabulaire élémentaire des raisonnements mathématiques, mais tout exposé théorique est exclu. Les notions de ce paragraphe pourront être présentées en contexte au cours du semestre, évitant ainsi une présentation trop formelle.

Connecteurs : et, ou, non, implication, réciproque, contraposée.
Quantificateurs : \forall, \exists.

On présentera des exemples de phrases mathématiques utilisant les connecteurs et les quantificateurs, et on expliquera comment écrire leurs négations.

2 - Raisonnement par récurrence et calcul de sommes et de produits

Emploi du raisonnement par récurrence. Tout exposé théorique sur le raisonnement par récurrence est exclu.

Formules donnant : $\sum_{k=0}^{n} q^k$, $\sum_{k=1}^{n} k$. Exemple : formules donnant $\sum_{k=1}^{n} k^2$, $\sum_{k=1}^{n} k^3$.

Notations \sum, \prod.
Définition de $n!$.

Les étudiants doivent savoir employer les notations $\sum_{i=1}^{n} u_i$ et $\sum_{i \in A} u_i$ où A désigne un sous-ensemble fini de N ou N^2.

3 - Ensembles, applications

L’objectif est d’acquérir le vocabulaire élémentaire sur les ensembles et les applications, en vue de préparer l’étude des chapitres d’algèbre linéaire et de probabilité, mais tout exposé théorique est exclu.

a) Ensembles, parties d’un ensemble

Appartenance. Inclusion. Notations \in, \subset.
Ensemble $P(E)$ des parties de E.

Complémentaire. Notation \overline{A}.

Union, intersection. Notations \cap, \cup.
Distributivité. Lois de Morgan.
Définition du produit cartésien d’ensembles.

On pourra donner l’exemple de $P(\{1, \ldots, 6\})$ afin de faciliter l’introduction de la notion de tribu.
La notation \overline{A} est à privilégier. En cas d’ambiguïté, on utilisera la notation C_E^A.
On fera le lien entre les opérations ensemblistes et les connecteurs logiques usuels.
On introduira les notations R^2 et R^n.

b) Applications

Définition. Composée de deux applications.
Restriction et prolongement d’une application.
Applications injectives, surjectives, bijectives.

Ces deux notions ne seront introduites que dans les cours d’algèbre linéaire et d’analyse.
On pourra donner des exemples issus du cours d’analyse.

II - Nombres complexes et polynômes

1 - Nombres complexes

L’objectif de l’étude des nombres complexes est d’aboutir au théorème de d’Alembert-Gauss et à la factorisation dans $\mathbb{R}[X]$ et $\mathbb{C}[X]$ de polynômes à coefficients réels. La construction de \mathbb{C} est hors programme et les acquis de la classe de terminale seront complétés. On évitera toute manipulation trop technique faisant intervenir les nombres complexes. Les résultats concernant les racines n-èmes de l’unité ne sont pas exigibles des étudiants.

Notation algébrique d’un nombre complexe, partie réelle et partie imaginaire.
Conjugué d’un nombre complexe.
Notation exponentielle. Module, argument.
Formules d’Euler et de Moivre.

On donnera l’interprétation géométrique d’un nombre complexe.
Brève révision de la trigonométrie.
Formules donnant $\cos(a + b)$ et $\sin(a + b)$.
Les racines n-èmes de l’unité pourront être étudiées comme exemples d’utilisation de la notation exponentielle.

2 - Polynômes

La construction des polynômes formels n’est pas au programme, on pourra identifier polynômes et fonctions polynomiales. Les démonstrations des résultats de ce paragraphe ne sont pas exigibles.

Ensemble $\mathbb{K}[X]$ des polynômes à coefficients dans \mathbb{K}.
Opérations algébriques.
Degré.
Ensembles $\mathbb{K}_n[X]$ des polynômes à coefficients dans \mathbb{K} de degré au plus n.
Division euclidienne.
Racines, ordre de multiplicité d’une racine.
Caractérisation de la multiplicité par factorisation d’une puissance de $(X - a)$.
Théorème de d’Alembert-Gauss.

Par convention $\text{deg}(0) = -\infty$.
Multiples et diviseurs. ▶
Cas du trinôme. ▶
Résultat admis.
Exemples simples de factorisation dans $\mathbb{C}[X]$ et $\mathbb{R}[X]$ de polynômes de $\mathbb{R}[X]$. Les méthodes devront être indiquées.
B -1ère année : Analyse

1 - Suites de nombres réels
L’objectif de ce chapitre est de familiariser les étudiants dès le premier semestre avec des méthodes d’analyse. La construction de \mathbb{R} est hors programme et le théorème de la borne supérieure est admis.

1 - Vocabulaire sur l’ensemble \mathbb{R} des nombres réels

Valeur absolue. Inégalité triangulaire.
Majorant, minorant, maximum, minimum, borne supérieure, borne inférieure d’une partie non vide de \mathbb{R}.
Théorème de la borne supérieure.
Partie entière d’un réel.

Quand il existe, le maximum de A coïncide avec la borne supérieure de A.
Résultat admis.
Notation $[x]$. La notation $E(.)$ est réservée à l’espérance mathématique.

2 - Exemples de suites réelles

Suites arithmético-géométriques.

Suites vérifiant une relation linéaire de récurrence d’ordre 2 à coefficients réels.
Équation caractéristique.

On se ramènera au cas d’une suite géométrique.
Cette partie pourra être l’occasion d’illustrer, dans un cas concret, les notions de famille libre, génératrice et de base. Dans le cas de racines complexes conjuguées α et $\overline{\alpha}$, on pourra introduire les suites $(\text{Re}(\alpha^n))$ et $(\text{Im}(\alpha^n))$.

3 - Convergence des suites réelles - Théorèmes fondamentaux

Limite d’une suite, suites convergentes.

Généralisation aux suites tendant vers $\pm \infty$.
Unicité de la limite.
Opérations algébriques sur les suites convergentes.
Compatibilité du passage à la limite avec la relation d’ordre.
Existence d’une limite par encadrement.
Suites monotones, croissantes, décroissantes, suites adjacentes.
Théorème de limite monotone.

Toute suite croissante majorée (respectivement décroissante minorée) converge, la limite étant la borne supérieure (respectivement inférieure) de l’ensemble des valeurs de la suite.
Une suite croissante non majorée (respectivement décroissante non minorée) tend vers $+\infty$ (respectivement $-\infty$).

Deux suites adjacentes convergent et ont même limite.
Rappel des croissances comparées.

Comparaisons des suites $(n!)$, (n^a), (q^n), $(\ln(n)^b)$.

4 - Étude asymptotique des suites

Suite négligeable.

Notation $u_n = o(v_n)$.
On présentera à nouveau les croissances comparées rappelées au premier semestre.

Notation $u_n \sim v_n$.

Suites équivalentes.

Compatibilité de l’équivalence avec le produit, le quotient et l’élévation à une puissance.

Il - Fonctions réelles d’une variable réelle

En analyse, on évitera la recherche d’hypothèses minimales, tant dans les théorèmes que dans les exercices et problèmes, préférant des méthodes efficaces pour un ensemble assez large de fonctions usuelles.

Pour les résultats du cours, on se limite aux fonctions définies sur un intervalle de \mathbb{R}. Les étudiants doivent savoir étudier les situations qui s’y ramènent simplement.

L’analyse reposant largement sur la pratique des inégalités, on s’assurera que celle-ci est acquise à l’occasion d’exercices.

Aucune démonstration n’est exigible des étudiants.

1 - Limite et continuité d’une fonction d’une variable en un point

Définition de la limite et de la continuité d’une fonction d’une variable en un point.

Unicité de la limite.

Limites à droite et à gauche.

Extension au cas où f est définie sur $I \setminus \{x_0\}$.

Extension de la notion de limite en $\pm \infty$ et aux cas des limites infinies.

On adoptera la définition suivante : f étant une fonction définie sur I, x_0 étant un élément de I ou une extrémité de I, et ℓ un élément de \mathbb{R}, on dit que f admet ℓ pour limite en x_0 si, pour tout nombre $\varepsilon > 0$, il existe un nombre $\alpha > 0$ tel que pour tout élément x de $I \cap [x_0 - \alpha, x_0 + \alpha]$, $|f(x) - \ell| \leq \varepsilon$; ainsi, lorsque x_0 appartient à I, f est continue en x_0, sinon f se prolonge en une fonction continue en x_0.
Opérations algébriques sur les limites.
Compatibilité avec la relation d’ordre.
Existence d’une limite par encadrement.
Prolongement par continuité en un point.
Si f admet une limite ℓ en x_0 et si (u_n) est une suite réelle définie sur I et tendant vers x_0, alors $(f(u_n))$ tend vers ℓ.
Limite d’une fonction composée.

La caractérisation séquentielle de la limite n’est pas au programme.

2 - Étude globale des fonctions d’une variable sur un intervalle

Fonctions paires, impaires, périodiques.
Fonctions majorées, minorées, bornées, monotones.
Théorème de limite monotone.

Fonctions continues sur un intervalle, opérations algébriques, composition.
Fonction continue par morceaux.

Toute fonction monotone sur $[a, b]$
$\left(-\infty \leq a < b \leq +\infty\right)$ admet des limites finies à droite et à gauche en tout point de $[a, b]$.
Comportement en a et b.

Une fonction f est continue par morceaux sur le segment $[a, b]$ s’il existe une subdivision $a_0 = a < a_1 < \cdots < a_n = b$ telle que les restrictions de f à chaque intervalle ouvert $[a_i, a_{i+1}]$ admettent un prolongement continu à l’intervalle fermé $[a_i, a_{i+1}]$.
On exclut toute étude approfondie des fonctions continues par morceaux.

Notations $\max f$ et $\min f$.
$\left[a, b\right]$

Toute fonction continue et strictement monotone sur un intervalle I définit une bijection de I sur l’intervalle $f(I)$. Sa bijection réciproque est elle-même continue et a le même sens de variation.
On utilisera ce résultat pour l’étude des équations du type $f(x) = k$.
En liaison avec l’algorithme, méthode de dichotomie.

3 - Dérivation

Représentation graphique de la fonction réciproque.
Dérivées à gauche et à droite.
Dérivée en un point.
Linéarité de la dérivation, dérivée d’un produit, dérivée d’une composée. Exemples.
Fonctions dérivables sur un intervalle, fonction dérivée.
Dérivée d’un polynôme.
Dérivation des fonctions réciproques.
Théorème de Rolle.
Égalité et inégalités des accroissements finis.

Interprétation graphique. ▶

Notation f'.

Caractérisation des fonctions constantes et monotones par l’étude de la dérivée.

Définition et dérivation de la fonction Arctan.

4 - Intégration sur un segment

La construction de l’intégrale de Riemann est hors programme.

Primitive d’une fonction continue sur un intervalle.
Toute fonction continue sur un intervalle admet une primitive sur cet intervalle.
Intégrale d’une fonction continue sur un segment.
Relation de Chasles.

Résultat admis.

Si f est continue sur un intervalle I, pour tout $(a, b) \in I^2$, on définit l’intégrale de f de a à b par :

$$\int_a^b f(t) \, dt = F(b) - F(a),$$

où F est une primitive de f sur I. Cette définition est indépendante du choix de la primitive F de f sur I.

Si f est continue sur $[a, b]$ et $a \leq b$,

$$\left| \int_a^b f(t) \, dt \right| \leq \int_a^b |f(t)| \, dt.$$
Changement de variable.

Sommes de Riemann à pas constant.

Les changements de variable non affines devront être indiqués aux candidats.
La convergence des sommes de Riemann ne sera démontrée que dans le cas d’une fonction de classe C^1.
Interprétation de l’intégrale en termes d’aire.

5 - Comparaison des fonctions d’une variable au voisinage d’un point

Fonction négligeable au voisinage de x_0.
Fonctions équivalentes au voisinage de x_0.

Notation $f = o(g)$.
Notation $f \sim g$.

$\lim_{x \to x_0} f/g = 0$.

Extension au cas $x_0 = \pm \infty$.
Compatibilité de l’équivalence avec le produit, le quotient et l’élévation à une puissance.

Comparaison des fonctions exponentielles, puissances et logarithmes au voisinage de l’infini, des fonctions puissances et logarithmes en 0.

On présentera à nouveau les croissances comparées rappelées au premier semestre.

6 - Dérivées successives

Fonction p fois dérivable en un point.
Fonctions de classe C^p, de classe C^∞ sur un intervalle. Opérations algébriques, formule de Leibniz. Théorème de composition.
La dérivée $(n+1)$-ème d’un polynôme de degré au plus n est nulle.

Notation $f^{(p)}$.

7 - Formules de Taylor

Formule de Taylor avec reste intégral.
Inégalité de Taylor-Lagrange.
Application à la caractérisation de la multiplicité d’une racine a d’un polynôme P de $\mathbb{R}[X]$ par l’étude des dérivées $P^{(k)}(a)$.

Ces formules seront données à l’ordre n pour une fonction de classe C^{n+1}.

8 - Développements limités

L’étude des développements limités ne constitue pas une fin en soi et l’on se gardera de tout excès de technicité dans ce domaine. La composition des développements limités n’est pas au programme. On se limitera, en pratique, à des développements limités au voisinage de 0.
Définition d’un développement limité.

Somme et produit de développements limités.
Formule de Taylor-Young à l’ordre n pour une fonction de classe C^n.
Application de la formule de Taylor-Young au développement limité de fonctions usuelles (exponentielle, logarithme, $x \mapsto (1+x)^n$, sinus et cosinus).

9 - Extremum

Pour préparer l’introduction des notions de topologie du programme de deuxième année, on insistera sur la différence entre la recherche d’extréum sur un segment et la recherche d’extréum sur un intervalle ouvert.

Toute fonction continue sur un segment admet des extrema globaux sur ce segment.
Dans le cas d’une fonction de classe C^1 : condition nécessaire d’existence d’un extréum local sur un intervalle ouvert.
Définition d’un point critique.
Condition suffisante d’existence d’un extréum local en un point critique pour une fonction de classe C^2 sur un intervalle ouvert.

On pourra montrer que le résultat tombe en défaut lorsque l’intervalle de définition n’est pas ouvert.

Ce résultat sera démontré grâce au développement limité à l’ordre 2.

10 - Fonctions convexes

Tous les résultats de cette section seront admis.

Définition des fonctions convexes, fonctions concaves.
Point d’inflexion.

Généralisation de l’inégalité de convexité.
Caractérisation des fonctions convexes de classe C^1.

Caractérisation des fonctions convexes et concaves de classe C^2.

Une fonction est convexe sur un intervalle I si $\forall(x_1, x_2) \in I^2, \forall(t_1, t_2) \in [0, 1]^2$ tels que $t_1 + t_2 = 1$,
$$f(t_1x_1 + t_2x_2) \leq t_1f(x_1) + t_2f(x_2).$$
Interprétation géométrique.

Les étudiants devront savoir que si f est de classe C^1, alors f est convexe si et seulement si l’une des deux propositions est vérifiée :
• f'' est croissante ;
• C_f est au-dessus des tangentes.
11 - Séries numériques

Série de terme général u_n.
Sommes partielles associées.

Convergence d’une série, somme et reste d’une série convergente.
Combinaison linéaire de séries convergentes.
Convergence des séries à termes positifs dans les cas $u_n \leq v_n$ et $u_n \sim v_n$.
Définition de la convergence absolue.
La convergence absolue implique la convergence.

Convergence des séries dans le cas $u_n = o(v_n)$ où (v_n) est une série convergente à termes positifs.
Convergence des séries de Riemann.
Convergence et formules de sommation des séries géométriques et de leurs deux premières dérivées.

Série exponentielle.

On soulignera l’intérêt de la série de terme général $u_{n+1} - u_n$ pour l’étude de la suite (u_n).

Résultat admis.

On remarquera que toute série absolument convergente est la différence de deux séries à termes positifs convergentes.
Résultat admis.

$$
e^x = \sum_{k=0}^{+\infty} \frac{x^k}{k!}.$$ Ce résultat pourra être démontré à l’aide de la formule de Taylor.

12 - Intégrales sur un intervalle quelconque

On évitera toute technicité dans ce chapitre dont l’objectif est d’introduire les outils utiles à l’étude des variables aléatoires à densité.

Intégration sur un intervalle semi-ouvert.
Convergence de l’intégrale d’une fonction continue sur $[a, b]$ ($-\infty < a < b \leq +\infty$).

On dira que $\int_a^b f(t) \, dt$ converge si
$$\lim_{x \to b} \int_a^x f(t) \, dt$$ existe et est finie.
On pose alors $\int_a^b f(t) \, dt = \lim_{x \to b} \int_a^x f(t) \, dt$.

Les techniques de calcul (intégration par parties, changement de variables non affine) seront pratiquées sur des intégrales sur un segment.

L’intégrale $\int_a^b f(t) \, dt$ converge si et seulement si
$$x \mapsto \int_a^x f(t) \, dt$$ est majorée sur $[a, b]$.
Théorèmes de convergence pour f et g positives au voisinage de b, dans les cas où $f \leq g$ et $f \sim g$.

Définition de la convergence absolue.
La convergence absolue implique la convergence.

Théorèmes de convergence dans le cas $f = o(g)$ avec g positive au voisinage de b.

Extension des notions précédentes aux intégrales sur un intervalle quelconque.

Convergence des intégrales $\int_1^{+\infty} \frac{dt}{t^\alpha}$, $\int_a^b \frac{dt}{(t-a)^\alpha}$ et $\int_0^{+\infty} e^{-at} \, dt$.

Théorèmes admis.

On remarquera que toute fonction continue est la différence de deux fonctions continues positives.
Théorème admis.

Brève extension aux fonctions définies et continues sur $]a_1, a_2]\cup a_2, a_3]\cup \cdots \cup a_{p-1}, a_p[$.
C -1ère année : Probabilités

1 - Probabilités sur un univers fini

L’objectif de cette première approche est de mettre en place un cadre simplifié mais formalisé dans lequel on puisse mener des calculs de probabilités sans difficulté théorique majeure.

Dans la continuité du programme de terminale, l’étude préalable du cas fini permettra de consolider les acquis et de mettre en place, dans des situations simples, les concepts probabilistes de base, en ne faisant appel qu’aux opérations logiques et arithmétiques élémentaires. C’est pourquoi, pour le premier semestre, on se restreindra à un univers Ω fini, muni de la tribu $\mathcal{P}(\Omega)$.

On évitera pour cette première approche un usage avancé de la combinatoire, et l’on s’attachera à utiliser le vocabulaire général des probabilités.

1 - Généralités

a) Observation d’une expérience aléatoire - Événements

Expérience aléatoire. Univers Ω des résultats observables, événements. Opérations sur les événements, événements incompatibles. Système complet d’événements fini.

On dégagera ces concepts à partir de l’étude de quelques situations simples. On fera le lien entre ces opérations et les connecteurs logiques. Une famille $(A_i)_{i \in I}$, où I est un sous-ensemble fini de \mathbb{N}, est un système complet si elle vérifie les conditions deux suivantes :

- $A_i \cap A_j = \emptyset$
- $\bigcup_{i \in I} A_i = \Omega$.

b) Probabilité

Définition d’une probabilité sur $\mathcal{P}(\Omega)$. Notion d’espace probabilisé.

Formule de Poincaré ou du crible pour deux et trois événements.

Une probabilité sur $\mathcal{P}(\Omega)$ est une application additive P à valeurs dans $[0,1]$ et vérifiant $P(\Omega) = 1$. Cas de l’équiprobabilité. Lors du premier semestre, on se restreindra à la tribu $\mathcal{P}(\Omega)$.

c) Probabilité conditionnelle

Probabilité conditionnelle. Notation P_A. P_A est une probabilité. $(\Omega, \mathcal{P}(\Omega), P_A)$ est un espace probabilisé.
Formule des probabilités composées.

- Si \(P(A) \neq 0 \), \(P(A \cap B) = P(A)P_A(B) \).
- Si \(P(A_1 \cap A_2 \cap \ldots \cap A_{n-1}) \neq 0 \) alors :
 \[
P \left(\bigcap_{i=1}^n A_i \right) = P(A_1)P_{A_1}(A_2) \ldots P_{A_1\cap A_2\cap \ldots \cap A_{n-1}}(A_n).
\]

Formule des probabilités totales.

Si \((A_i)_{i \in I} \) est un système complet fini, alors pour tout événement \(B \) on a :

\[
P(B) = \sum_{i \in I} P(B \cap A_i).
\]

Formule de Bayes.

On donnera de nombreux exemples d’utilisation de ces formules.

d) Indépendance en probabilité

Indépendance de deux événements.

Si \(P(A) \neq 0 \), \(A \) et \(B \) sont indépendants si et seulement si \(P_A(B) = P(B) \).

On remarquera que la notion d’indépendance est relative à la probabilité.

Indépendance mutuelle de \(n \) événements.
Si \(n \) événements \(A_1, ..., A_n \) sont mutuellement indépendants, il en est de même pour les événements \(B_i \) avec \(B_i = A_i \) ou \(\overline{A}_i \).

2 - Variables aléatoires réelles

On introduit dans cette section la notion de variable aléatoire réelle définie sur un univers fini. Les variables aléatoires sont alors à valeurs dans un ensemble fini, ce qui simplifie la démonstration des formules.

Une variable aléatoire réelle sur \((\Omega, \mathcal{P}(\Omega))\) est une application de \(\Omega\) dans \(\mathbb{R}\).

Système complet associé à une variable aléatoire.

Fonction de répartition d’une variable aléatoire \(X\).

Loi de probabilité d’une variable aléatoire réelle.

Variable aléatoire \(Y = g(X)\), où \(g\) est définie sur \(X(\Omega)\). Étude de la loi de \(Y = g(X)\).

Espérance d’une variable aléatoire.

Théorème de transfert.

\[
E(aX + b) = aE(X) + b.
\]
Variance et écart-type d’une variable aléatoire.
Cas particulier où $V(X) = 0$.
Calcul de la variance.
$V(aX + b) = a^2V(X)$.
Variables centrées, centrées réduites.

3 - Lois usuelles

Variable aléatoire certaine.
Loi de Bernoulli, espérance et variance.

Loi binomiale.
Coefficients binomiaux, notation $\binom{n}{p}$.
Formule du triangle de Pascal.

Formules $\binom{n}{p} = \frac{n!}{p!(n-p)!}$.
\[\frac{n}{p} = \binom{n}{n-p} \text{ et } \frac{n}{p} = \frac{n}{p}(n-1). \]
Formule du binôme de Newton donnant $(a+b)^n$.
Espérance et variance d’une variable de loi binomiale.
Loi uniforme sur $[1, n]$, espérance, variance.

4 - Compléments de combinatoire

Dénombrement des ensembles suivants :
- parties d’un ensemble à n éléments ;
- parties à p éléments d’un ensemble à n éléments ;
- p-listes d’un ensemble à n éléments ;
- p-listes d’éléments distincts d’un ensemble à n éléments ;
- permutations d’un ensemble à n éléments.

On fera le lien entre les parties à p éléments d’un ensemble à n éléments et le nombre de chemins d’un arbre réalisant p succès pour n répétitions.
On pourra utiliser la représentation arborescente d’un ensemble de p-listes dans les problèmes de dénombrement.

II - Probabilités sur un univers quelconque

Dans ce second temps de l’étude des probabilités, le vocabulaire général est adopté et complété (en particulier le vocabulaire “ espace probabilisé ” et la notation (Ω, \mathcal{A}, P)), mais aucune
difficulté théorique ne sera soulevée sur ce cadre. L’étude des variables aléatoires et notamment celles des lois usuelles se fera en lien étroit avec la partie informatique du programme.

1 - Espace probabilisé

Tribu d’événements ou σ-algèbre d’événements.
Généralisation de la notion de système complet d’événements à une famille dénombrable d’événements deux à deux incompatibles et de réunion égale à Ω.

Une probabilité est une application P définie sur la tribu Α à valeurs dans [0, 1], σ-additive telle que P(Ω) = 1.
Tribu engendrée par un système complet d’événements.
Notion d’espace probabilisé.
Propriétés vraies presque sûrement. Événement négligeable, événement presque sûr.
Théorème de la limite monotone.

Notation Α.
On pourra donner quelques exemples significatifs d’événements de la forme :
\[A = \bigcap_{n=0}^{+\infty} A_n \quad \text{et} \quad A = \bigcup_{n=0}^{+\infty} A_n. \]
On fera le lien avec le cas des univers finis en expliquant que P(Ω) est une tribu.
On pourra introduire différentes tribus sur \{1, 2, 3, 4, 5, 6\} et montrer que le choix de la tribu dépend de l’expérience que l’on cherche à modéliser.

Existence admise.

Notation (Ω, А, P).

- Pour toute suite croissante \((A_n) \) d’événements,
 \[P\left(\bigcup_{n=0}^{+\infty} A_n\right) = \lim_{n \to +\infty} P(A_n). \]
- Pour toute suite décroissante \((A_n) \) d’événements,
 \[P\left(\bigcap_{n=0}^{+\infty} A_n\right) = \lim_{n \to +\infty} P(A_n). \]

Pour toute suite \((A_n) \) d’événements,

- \[P\left(\bigcup_{n=0}^{+\infty} A_n\right) = \lim_{n \to +\infty} P\left(\bigcup_{k=0}^{n} A_k\right). \]
- \[P\left(\bigcap_{n=0}^{+\infty} A_n\right) = \lim_{n \to +\infty} P\left(\bigcap_{k=0}^{n} A_k\right). \]

Les démonstrations de ces formules ne sont pas exigibles.
On pourra donner comme exemple d’événement négligeable la réalisation d’une suite infinie de PILE lors d’un jeu de PILE ou FACE.
Généralisation de la notion de probabilité conditionnelle.
Généralisation de la formule des probabilités composées.
Généralisation de la formule des probabilités totales.
Indépendance mutuelle d’une suite infinie d’événements.

2 - Généralités sur les variables aléatoires réelles

Définition.

Une variable aléatoire réelle sur (Ω, \mathcal{A}) est une application de Ω dans \mathbb{R} telle que, pour tout réel x, $\{\omega \in \Omega | X(\omega) \leq x\}$ est dans la tribu \mathcal{A}.

On adoptera les notations habituelles $[X \in I]$, $[X = x]$, $[X \leq x]$, etc.

On pourra, à l’aide d’exemples, illustrer comment obtenir des événements du type $[X = x]$ ou $[a \leq X < b]$ à partir d’événements du type $[X \leq x]$.

\[\forall x \in \mathbb{R}, \quad F_X(x) = P(X \leq x). \]

F_X est croissante et continue à droite en tout point, $\lim_{x \to -\infty} F_X = 0$, $\lim_{x \to +\infty} F_X = 1$.

La fonction de répartition caractérise la loi d’une variable aléatoire. Résultat admis.

3 - Variables aléatoires réelles discrètes

On commencera cette section en expliquant comment les résultats vus précédemment se prolongent dans le cadre général et l’on insistera sur les problèmes de convergence de séries que l’on rencontre lors de l’étude de variables aléatoires infinies.

Définition d’une variable aléatoire réelle discrète définie sur (Ω, \mathcal{A}).

Caractérisation de la loi d’une variable aléatoire discrète par la donnée des valeurs $P(X = x)$ pour $x \in X(\Omega)$.

Tribu engendrée par une variable aléatoire discrète.

L’ensemble des valeurs prises par ces variables aléatoires sera indexé par une partie finie ou infinie de \mathbb{N} ou \mathbb{Z}.

La tribu \mathcal{A}_X des événements liés à X est la tribu engendrée par le système complet $\{[X = x]\}_{x \in X(\Omega)}$. Cette tribu est aussi appelée tribu engendrée par la variable aléatoire X et constitue l’information apportée par X.

Variable aléatoire $Y = g(X)$, où g est définie sur l’ensemble des valeurs prises par la variable aléatoire X. Étude de la loi de $Y = g(X)$.

21
Espérance d’une variable aléatoire.

Théorème de transfert.

\[E(aX + b) = aE(X) + b. \]
Moment d’ordre \(r \) \((r \in \mathbb{N}) \).
Variance et écart-type d’une variable aléatoire discrète.
Calcul de la variance.
\[V(aX + b) = a^2V(X). \]
Cas particulier où \(V(X) = 0 \).
Variables centrées, centrées réduites.

4 - Lois de variables discrètes usuelles

Lois discrètes usuelles à valeurs dans un ensemble fini sur l’espace probabilisé \((\Omega, \mathcal{A}, P) \).
Loi géométrique (rang d’apparition d’un premier succès dans un processus de Bernoulli sans mémoire).
Espérance et variance.
Loi de Poisson : définition, espérance, variance.

5 - Introduction aux variables aléatoires à densité

Définition d’une variable aléatoire à densité.

Toute fonction \(f_X \) à valeurs positives, qui éventuellement ne diffère de \(F_X \) qu’en un nombre fini de points, est une densité de \(X \).
Caractérisation de la loi d’une variable aléatoire à densité par la donnée d’une densité \(f_X \).

Quand \(X(\Omega) \) est infini, \(X \) admet une espérance si et seulement si la série \(\sum_{x \in X(\Omega)} xP(X = x) \) est absolument convergente.

Quand \(X(\Omega) \) est infini, \(g(X) \) admet une espérance si et seulement si la série \(\sum_{x \in X(\Omega)} g(x)P(X = x) \) est absolument convergente, et alors \(E(g(X)) = \sum_{x \in X(\Omega)} g(x)P(X = x) \). Théorème admis.

Notation \(m_r(X) = E(X^r) \).
Notations \(V(X) \) et \(\sigma(X) \).

Formule de Koenig-Huygens :
\[V(X) = E(X^2) - (E(X))^2. \]

Notation \(X^* \) pour la variable aléatoire centrée réduite associée à \(X \).

On généralisera les lois \(B(p) \), \(B(n, p) \) et \(U([a, b]) \) vues lors du premier semestre.

Notation \(X \mapsto G(p). \)
Si \(X \mapsto G(p) \), pour tout nombre entier naturel non nul \(k \),
\[P(X = k) = p(1 - p)^{k-1}. \]

Notation \(X \mapsto P(\lambda) \).

On dit qu’une variable aléatoire \(X \) est à densité si sa fonction de répartition \(F_X \) est continue sur \(\mathbb{R} \) et de classe \(C^1 \) sur \(\mathbb{R} \) éventuellement privé d’un ensemble fini de points.

Pour tout \(x \) de \(\mathbb{R} \), \(F_X(x) = \int_{-\infty}^{x} f_X(t)dt \).
Toute fonction f positive, continue sur \mathbb{R} éventuellement privé d’un nombre fini de points, et telle que $\int_{-\infty}^{+\infty} f(t)dt = 1$ est la densité d’une variable aléatoire. Transformation affine d’une variable à densité.

Espérance d’une variable à densité.
Variables aléatoires centrées.

$$E(aX + b) = aE(X) + b.$$

6 - Lois de variables à densité usuelles

Loi uniforme sur un intervalle. Espérance.

Loi exponentielle. Caractérisation par l’absence de mémoire. Espérance.

Loi normale centrée réduite, loi normale (ou de Laplace-Gauss). Espérance.

Résultat admis.

Les étudiants devront savoir calculer la fonction de répartition et la densité de $aX + b$ ($a \neq 0$).

Une variable aléatoire X de densité f_X admet une espérance $E(X)$ si et seulement si l’intégrale $\int_{-\infty}^{+\infty} xf_X(x)dx$ est absolument convergente ; dans ce cas, $E(X)$ est égale à cette intégrale.

Exemples de variables aléatoires n’admettant pas d’espérance.

Notation $X \sim U[a,b]$. \[\begin{array}{c}
\end{array}\]

$X \sim U[0,1] \iff Y = a + (b-a)X \sim U[a,b]$.

Notation $X \sim \mathcal{E}(\lambda)$. \[\begin{array}{c}
\end{array}\]

$X \sim \mathcal{E}(1) \iff Y = \frac{1}{\lambda}X \sim \mathcal{E}(\lambda)$ ($\lambda > 0$).

Notation $X \sim \mathcal{N}(\mu, \sigma^2)$. \[\begin{array}{c}
\end{array}\]

$X \sim \mathcal{N}(\mu, \sigma^2) \iff X^* = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0,1)$ avec $\sigma > 0$.

On attend des étudiants qu’ils sachent représenter graphiquement les fonctions densités des lois normales et utiliser la fonction de répartition Φ de la loi normale centrée réduite.

7 - Convergences et approximations

a) Convergence en probabilité

Inégalités de Markov et de Bienaymé-Tchebychev pour les variables aléatoires discrètes.

Si X est une variable aléatoire positive admettant une espérance, alors pour tout $\lambda > 0$:

$$P(X \geq \lambda) \leq \frac{E(X)}{\lambda}.$$

Pour toute variable X admettant espérance et variance, pour tout $\varepsilon > 0$:

$$P(|X - E(X)| \geq \varepsilon) \leq \frac{V(X)}{\varepsilon^2}. $$
Convergence en probabilité : si \((X_n)\) et \(X\) sont des variables aléatoires définies sur \((\Omega, \mathcal{A}, P)\), \((X_n)\) converge en probabilité vers \(X\) si, pour tout \(\varepsilon > 0\), \(\lim_{n \to \infty} P(|X_n - X| > \varepsilon) = 0\).

Loi faible des grands nombres pour la loi binomiale.

\[\text{Notation } X_n \xrightarrow{P} X.\]

Si \((X_n)\) est une suite de variables aléatoires telle que \(X_n \sim \mathcal{B}(n, p)\), alors \(\frac{1}{n}X_n\) converge en probabilité vers \(p\).

La loi faible des grands nombres permet une justification partielle, a posteriori, de la notion de probabilité d’un événement, introduite intuitivement.

\[\text{Notation } X_n \xrightarrow{\mathcal{L}} X.\]

Si \((X_n)\) est une suite de variables aléatoires telle que \(X_n \sim \mathcal{B}(n, p)\) (respectivement \(X_n \sim \mathcal{P}(n\lambda)\)), alors la suite de variables aléatoires centrées réduites \((X_n^*)\) converge en loi vers une variable aléatoire suivant la loi normale centrée réduite. Théorème admis.
D -1ère année : Algèbre linéaire

I - Calcul matriciel

1 - Matrices rectangulaires

Ensemble $\mathcal{M}_{n,p}(\mathbf{K})$ des matrices à n lignes et p colonnes à coefficients dans \mathbf{K}.

Opérations dans $\mathcal{M}_{n,p}(\mathbf{K})$.
Produit matriciel.

Transposée d’une matrice.
Transposition d’un produit.

2 - Cas des matrices carrées

Ensemble $\mathcal{M}_n(\mathbf{K})$ des matrices carrées d’ordre n à coefficients dans \mathbf{K}.
Matrices triangulaires, diagonales, symétriques, antisymétriques.
Matrices inversibles, inverse d’une matrice.
Ensemble $GL_n(\mathbf{K})$.
Inverses d’un produit. Transposition de l’inverse.
Formule donnant l’inverse d’une matrice carrée d’ordre 2.

3 - Systèmes linéaires

Tout développement théorique est hors programme.

Définition d’un système linéaire.
Écriture matricielle d’un système linéaire.
Système homogène. Système de Cramer.
Résolution d’un système linéaire par la méthode du pivot de Gauss.

Calcul de l’inverse de la matrice A par la résolution du système $AX = Y$.

Addition, multiplication par un scalaire.
On pourra faire le lien entre le produit AB et le produit de A avec les colonnes de B.
Notation $'A$.

On admettra que pour une matrice carrée, un inverse à gauche ou à droite est l’inverse.

La méthode sera présentée à l’aide d’exemples.
On adoptera les notations suivantes pour le codage des opérations élémentaires sur les lignes :
$L_i \leftarrow L_i + aL_j$ avec $i \neq j$,
$L_i \leftarrow aL_i$ ($a \neq 0$), $L_j \leftrightarrow L_i$,
$L_i \leftarrow aL_i + bL_j$ ($a \neq 0, i \neq j$).
Inversibilité des matrices triangulaires, diagonales.

II - Introduction aux espaces vectoriels et sous-espaces vectoriels
Cette première approche des espaces vectoriels permet d’introduire le vocabulaire et sera accompagnée de nombreux exemples.
Il sera possible, à l’occasion d’autres chapitres en analyse ou probabilité, de rappeler la structure d’espace vectoriel des ensembles les plus courants, afin de familiariser les étudiants avec le vocabulaire et les notions fondamentales, avant une étude plus approfondie des espaces vectoriels au second semestre.
Le programme se place dans le cadre des espaces vectoriels sur \mathbf{K}. Les notions de corps, d’algèbre et de groupe sont hors programme.

1 - Espaces vectoriels sur \mathbf{R} ou \mathbf{C}
Structure d’espace vectoriel.
Sous-espaces vectoriels.

Combinaisons linéaires.
Sous-espace engendré.

Définition d’une famille libre, d’une famille génératrice, d’une base.

L’objectif de ce chapitre est d’approfondir et compléter les notions vues au premier semestre.

2 - Espaces vectoriels de dimension finie
Espaces admettant une famille génératrice finie.
Existence de bases.
Si L est libre et si G est génératrice, le cardinal de L est inférieur ou égal au cardinal de G.
Dimension d’un espace vectoriel.
Caractérisation des bases.

Rang d’une famille finie de vecteurs.
Théorème de la base incomplète.
Dimension d’un sous-espace vectoriel.

Cette étude doit être accompagnée de nombreux exemples issus de l’algèbre (espaces \mathbf{K}^n, espaces de polynômes, espaces de matrices), de l’analyse (espaces de suites, de fonctions).
On ne considèrera que des combinaisons linéaires de familles finies.
Une famille finie d’un espace vectoriel E est la donnée d’une liste finie (x_1, \ldots, x_n) de vecteurs de E. Le cardinal de cette famille est n.
On se limitera à des familles et des bases de cardinal fini.
Exemple de la base canonique de \mathbf{K}^n.

Notation $\dim(E)$.
Dans un espace vectoriel de dimension n, une famille libre ou génératrice de cardinal n est une base.

Si F est un sous-espace vectoriel de E et si $\dim(F) = \dim(E)$, alors $F = E$.

26
3 - Compléments sur les espaces vectoriels

Somme de deux sous-espaces vectoriels.
Somme directe de deux sous-espaces vectoriels.
Sous-espaces vectoriels supplémentaires.
Somme et somme directe de k sous-espaces vectoriels.
Existence d’un supplémentaire en dimension finie.
Dimension d’une somme de deux sous-espaces vectoriels d’un espace vectoriel de dimension finie.
Dimension d’un supplémentaire.

Dimension d’une somme directe de k espaces vectoriels.
Concaténation de bases de sous espaces vectoriels.

4 - Applications linéaires

a) Cas général

Définition d’une application linéaire de E dans F. Espace vectoriel $\mathcal{L}(E, F)$ des applications linéaires d’un espace vectoriel E dans un espace vectoriel F.

Composée de deux applications linéaires.
Isomorphismes.
Endomorphismes, espace vectoriel $\mathcal{L}(E)$ des endomorphismes de E.
Noyau et image d’une application linéaire.
Projecteurs associés à deux espaces supplémentaires.

Un K-espace vectoriel est de dimension n si et seulement si il est isomorphe à K^n.
Puissances d’un endomorphisme.

Caractérisation des projecteurs par la relation $p^2 = p$.

b) Cas de la dimension finie

Rang d’une application linéaire.

Si (e_1, \ldots, e_n) est une famille génératrice de E alors la famille $(f(e_1), \ldots, f(e_n))$ engendre $\text{Im}(f)$.
Lien entre recherche de l’image et résolution de système.
Formule du rang.

Formes linéaires et hyperplans.

c) Matrices et applications linéaires

Matrice d’une application linéaire dans des bases.

Vecteur colonne des coordonnées dans une base \mathcal{B}_E.
Interprétation matricielle de l’image d’un vecteur par une application linéaire.
Lien du produit matriciel avec la composition des applications linéaires.
Rang d’une matrice.

Une matrice et sa transposée ont même rang.

Si E et F sont des espaces vectoriels, E étant de dimension finie, et une application linéaire u de E dans F,
\[\dim E = \dim(\text{Ker } u) + \dim(\text{Im } u). \]
Application à la caractérisation des isomorphismes.

Si \mathcal{B}_E et \mathcal{B}_F sont des bases respectives de E et F, notation $\text{Mat}_{\mathcal{B}_F, \mathcal{B}_E}(f)$.
Matrices lignes et formes linéaires.

\[\text{Mat}_{\mathcal{B}_F, \mathcal{B}_E}(g \circ f) = \text{Mat}_{\mathcal{B}_G, \mathcal{B}_E}(g) \text{Mat}_{\mathcal{B}_F, \mathcal{B}_E}(f). \]
Égalité des rangs d’une application linéaire et de sa matrice dans des bases.
Résultat admis.

d) Cas des endomorphismes et des matrices carrées

Matrice d’un endomorphisme f de E dans la base \mathcal{B}.
Formule du binôme pour deux endomorphismes ou deux matrices carrées qui commutent.
Automorphismes. Ensemble $GL(E)$ des automorphismes de E.
Matrices inversibles, inverse d’une matrice. Ensemble $GL_n(K)$.
Lien entre les isomorphismes de E et les matrices inversibles.

Polynôme d’endomorphisme, polynôme de matrice carrée. Polynôme annihilateur.

Notation $\text{Mat}_\mathcal{B}(f)$.

Lien avec les isomorphismes et avec $GL(E)$.

On pourra démontrer que pour le produit matriciel dans $\mathcal{M}_n(K)$, l’inverse à gauche est également un inverse à droite.
Exemples de calcul d’automorphismes réciproques, d’inverses de matrices et de puissances k-ème d’une matrice par utilisation d’un polynôme annihilateur.
Toute théorie générale sur les polynômes annihilateurs est exclue.

28
1 - Éléments d’informatique et d’algorithmique

L’objectif est d’initier les étudiants à l’algorithmique et à l’utilisation de l’informatique en mathématiques au travers de thèmes empruntés au programme pour comprendre, illustrer et éclairer les notions introduites. Dès qu’un calcul numérique est envisagé, dès qu’un problème incite à tester expérimentalement un résultat, dès qu’une situation aléatoire peut être modélisée avec des outils informatiques, le recours à des algorithmes et des logiciels devra devenir naturel. Le logiciel retenu pour la programmation dans ce programme des classes économiques et commerciales est Scilab.
L’utilisation du logiciel se fait en continuité avec le cours de mathématiques et sera suivi d’une mise en œuvre sur ordinateur. Seules les notions de Scilab indiquées dans le programme sont exigibles.

1 - L’environnement logiciel

a) Constantes prédéfinies. Création de variables par affectation.

```
%pi %e
```
Approximations de π et e.

Affectation :
```
nom = expression
```
// permet de commenter une commande.

L’expression peut être du type numérique, matricielle ou du type chaîne de caractères.

b) Constructions de vecteurs et de matrices numériques.

- Vecteurs lignes :
 `[, , , ,]`
- Vecteurs colonnes :
 `[; ; ;]`
- Matrices $n \times p$:
 `[, , , ; , , ,]`

c) Opérations élémentaires

Opérations arithmétiques :
```
+, -, *, /, ^
```
Les opérations arithmétiques de base s’appliquent aux variables numériques ou matricielles.

Comparaisons - tests :
```
==, >, <, >=, <=, <>
```

Logiques
```
&
|
and
or
```

d) Fonctions usuelles prédéfinies

Fonctions numériques usuelles :
```
log, exp, floor, abs, sqrt, sin, cos
```
Toutes ces fonctions peuvent s’appliquer à des variables numériques ou à des matrices élément par élément.
Fonctions `rand`

Fonctions matricielles : `rank(A), inv(A), A'`

La fonction `grand` pourra être utilisée avec les paramètres correspondant aux lois de probabilité présentes dans le programme.
Extraction ou modification d’un élément, d’une ligne ou d’une colonne d’une matrice.
On pourra utiliser les fonctions `size(A), find` dans le cadre de simulations.
Pratique des opérations et des fonctions matricielles dans des situations concrètes.

2 - Graphisme en deux dimensions

Courbes représentatives de fonctions usuelles, de densités et de fonctions de répartition.
Tracé d’histogrammes.

On pourra utiliser les fonctions `plot, plot2d, bar, histplot, linspace(a,b,n)` et les opérations `%./`, `%.*`.

3 - Programmation d’algorithmes et de fonctions

Les structures suivantes seront utilisées :

Structure conditionnelle :
`if ...then ...end`
`if ...then ...else ...end`

Structures répétitives :
`for k=...: :...:end`
`while ...then ...end`

Fonctions - arguments - retour de résultats.
Fonction d’entrée des données `input()`
Fonction de sortie de résultat(s) `disp()`

Exemples : `n!, \binom{n}{p}`.
Saisie au clavier - message indicatif possible.
Affichage du contenu d’une variable à l’écran avec commentaire éventuel.

II - Liste de savoir-faire exigibles en première année

Calcul des termes d’une suite.
Calculs de valeurs approchées de la limite d’une suite ou de la somme d’une série.

Exploitation graphique des résultats.
On utilisera des structures répétitives et conditionnelles en exploitant l’étude mathématique.
La détermination du rang d’arrêt du calcul résultera directement de l’étude mathématique ou d’un algorithme qui en découle.
On utilisera différentes méthodes dont certaines résulteront d’une étude mathématique (suites récurrentes, encadrements, dichotomie).
Application au calcul de la fonction de répartition d’une variable aléatoire suivant la loi normale centrée réduite.
Utilisation de la fonction `rand` pour simuler des expériences aléatoires élémentaires conduisant à une loi usuelle.
Simulation de phénomènes aléatoires.

Résolution de systèmes $AX = B$.

Loi binomiale, loi géométrique.

Utilisation de la fonction `grand`.
On pourra utiliser une simulation pour comparer expérimentalement une loi $\mathcal{B}(n, \frac{\lambda}{n})$ (n grand) avec la loi de Poisson.
On pourra utiliser une simulation pour comparer expérimentalement une loi binomiale avec une loi normale.
F -1er semestre de deuxième année

I - Algèbre linéaire et bilinéaire
Dans tout ce chapitre K désignera R ou C.

1 - Compléments d’algèbre linéaire

a) Changement de base

Matrice d’un endomorphisme dans une base.
Matrice de passage de \mathcal{B} vers $\mathcal{B'}$.

\[P_{\mathcal{B}',\mathcal{B}}^{-1} = P_{\mathcal{B},\mathcal{B}'} \]

Formules de changement de base.

Matrices semblables.

Définition d’un sous-espace stable par un endomorphisme.

Rappels.
Notation $P_{\mathcal{B},\mathcal{B}'}$.

\[X_\mathcal{B} = P_{\mathcal{B},\mathcal{B}'} X_\mathcal{B'} \]

\[\text{Mat}_\mathcal{B}(f) = P_{\mathcal{B},\mathcal{B}'} \text{Mat}_\mathcal{B}(f) P_{\mathcal{B},\mathcal{B}'} \]

Deux matrices A et B carrées sont semblables s’il existe une matrice inversible P telle que $B = P^{-1}AP$.

A et B peuvent être interprétées comme les matrices d’un même endomorphisme dans des bases différentes.

Seule la définition est exigible des étudiants.

b) Trace

La trace d’une matrice carrée est introduite uniquement comme outil simple et efficace en vue de la recherche de valeurs propres. Tout développement théorique est exclu. Aucun autre résultat concernant la trace n’est au programme.

Trace d’une matrice carrée.
Linéarité de la trace.
Invariance de la trace par changement de base.

Notation $\text{Tr}(A)$.

\[\text{Tr}(A) = \text{Tr}(P^{-1}AP) \]
2 - Éléments propres des endomorphismes et des matrices carrées, réduction

Les espaces vectoriels considérés dans ce chapitre sont définis sur \mathbb{K}. Dans toute cette partie, f désignera un endomorphisme d’un espace vectoriel E de dimension finie, et A une matrice carrée.

a) Vecteurs propres et espaces propres

Valeurs propres, vecteurs propres, sous-espaces propres d’un endomorphisme de E et d’une matrice carrée.
Spectre d’un endomorphisme et d’une matrice carrée.
Si Q est un polynôme, obtention d’éléments propres de $Q(f)$ à partir d’éléments propres de f.

b) Recherche d’éléments propres

Polynômes annulateurs d’un endomorphisme, d’une matrice carrée.
Si Q est un polynôme annulateur de f (respectivement A) et λ une valeur propre de f (respectivement A), alors λ est racine de Q.
Tout endomorphisme d’un espace de dimension finie admet au moins un polynôme annulateur non nul.
Toute matrice carrée admet au moins un polynôme annulateur non nul.

Exemples des homothéties, des projecteurs et des symétries.

Aucune autre connaissance sur les polynômes annulateurs ne figure au programme.

C) Propriétés générales

Un endomorphisme d’un espace de dimension finie admet un nombre fini de valeurs propres et ses sous-espaces propres sont en somme directe.
Une concaténation de familles libres de sous-espaces propres associés à des valeurs propres distinctes forme une famille libre de E.

$$\sum_{\lambda \in \text{Sp}(f)} \dim \ker (f - \lambda \text{Id}_E) \leq \dim(E).$$

En particulier, une famille de vecteurs propres associés à des valeurs propres distinctes est une famille libre.
Un endomorphisme d’un espace vectoriel de dimension n a au plus n valeurs propres.

d) Réduction des endomorphismes et des matrices carrées

f est diagonalisable si et seulement s’il existe une base B de E composée de vecteurs propres de f.

Mat$_B(f)$ est alors une matrice diagonale.
Caractérisation des endomorphismes diagonalisables à l’aide des dimensions des sous-espaces propres.

\(f \) est diagonalisable si et seulement si \(E \) est somme directe des sous-espaces propres de \(f \).

Matrices diagonalisables, diagonalisation d’une matrice carrée.

Application au calcul des puissances d’un endomorphisme ou d’une matrice carrée.

3 - Algèbre bilinéaire

L’objectif de ce chapitre est d’introduire les notions fondamentales de l’algèbre bilinéaire dans le cadre euclidien, utilisées en particulier lors de l’étude des fonctions de \(n \) variables. L’étude des endomorphismes symétriques sera faite au quatrième semestre.

Les espaces vectoriels considérés dans ce chapitre sont des \(\mathbb{R} \)-espaces vectoriels. On identifie \(\mathbb{R} \) et \(\mathcal{M}_{n,1}(\mathbb{R}) \).

a) Produit scalaire

Produit scalaire, norme associée.

Inégalité de Cauchy-Schwarz.

Vecteurs orthogonaux, sous-espaces orthogonaux.

Familles orthogonales, familles orthonormales ou orthonormées.

Théorème de Pythagore.

Un produit scalaire est une forme bilinéaire symétrique, définie positive.

Produit scalaire canonique sur \(\mathbb{R}^n \); exemples de produits scalaires.

Cas de l’égalité.

On ne considérera que des familles finies.

Toute famille orthogonale ne contenant pas le vecteur nul est libre.

b) Espaces euclidiens

Dans ce paragraphe \(x, y \) désignent des vecteurs d’un espace vectoriel et \(X, Y \) sont les colonnes coordonnées correspondantes dans une base.

Un espace euclidien est un espace vectoriel de dimension finie sur \(\mathbb{R} \), muni d’un produit scalaire.
Existence de bases orthonormées.
Coordonnées et norme d’un vecteur dans une base orthonormée.
Expression matricielle du produit scalaire et de la norme euclidienne en base orthonormée.
Changement de bases orthonormées.

Supplémentaire orthogonal d’un sous-espace vectoriel.
Complétement d’une famille orthonormée en une base orthonormée.

II - Fonctions réelles définies sur \(\mathbb{R}^n \)

1 - Introduction aux fonctions définies sur \(\mathbb{R}^n \)

Au troisième semestre, l’objectif est de confronter les étudiants à la notion de fonction réelle de \(n \) variables, aux principales définitions tout en évitant les problèmes de nature topologique. C’est pourquoi le domaine de définition des fonctions sera systématiquement \(\mathbb{R}^n \), muni de sa structure euclidienne canonique. L’étude de la continuité d’une fonction en un point pathologique est hors programme, ainsi que l’étude des recollements de formules lorsque \(f \) est définie sur \(\mathbb{R}^n \) par plusieurs formules.
Dès que possible, les notions introduites seront illustrées à l’aide du logiciel Scilab.

Fonctions définies sur \(\mathbb{R}^n \) à valeurs dans \(\mathbb{R} \).
On donnera de nombreux exemples de fonctions de 2, 3 ou \(n \) variables réelles.
Les fonctions polynomiales de \(n \) variables donnent des exemples simples de fonctions définies sur \(\mathbb{R}^n \).
Cas des fonctions affines de \(n \) variables.
On se limitera à des exemples simples.

Équation du graphe d’une fonction définie sur \(\mathbb{R}^n \).
Lignes de niveau pour les fonctions de deux variables.
Continuité d’une fonction de \(\mathbb{R}^n \) dans \(\mathbb{R} \).

Une fonction \(f \), définie sur \(\mathbb{R}^n \), est continue au point \(x_0 \) de \(\mathbb{R}^n \) si :
\[\forall \varepsilon > 0, \exists \alpha > 0, \forall x \in \mathbb{R}^n, \]
\[|x - x_0| < \alpha \implies |f(x) - f(x_0)| \leq \varepsilon. \]

\(f \) est continue sur \(\mathbb{R}^n \) si et seulement si \(f \) est continue en tout point de \(\mathbb{R}^n \).
Aucune difficulté ne sera soulevée sur ce sujet.

On mettra en avant l’analogie avec la notion de continuité des fonctions d’une variable vue en première année.

Les fonctions polynomiales de \(n \) variables sont continues sur \(\mathbb{R}^n \). Résultat admis.

Somme, produit, quotient.

La composition d’une fonction continue sur \(\mathbb{R}^n \) à valeurs dans un intervalle \(I \) de \(\mathbb{R} \) par une fonction continue de \(I \) à valeurs dans \(\mathbb{R} \) est continue.

Résultats admis.

2 - Calcul différentiel

L’introduction des notions différentielles concernant les fonctions numériques de plusieurs variables réelles se fait en se limitant aux fonctions définies sur \(\mathbb{R}^n \). La détermination de la classe d’une fonction n’est pas au programme.

La recherche d’extremum est abordée ici, jusqu’à la condition nécessaire du premier ordre.

Les fonctions sont désormais supposées définies et continues sur \(\mathbb{R}^n \).

a) Dérivées partielles, gradient

Fonctions partielles en un point.

Dérivées partielles d’ordre 1.

Gradient en un point \(x \).

Notation \(\partial_i(f) \).

Notation \(\nabla(f)(x) \).

\(\nabla(f)(x) \) est l’élément de \(\mathbb{R}^n \) égal à \((\partial_1(f)(x), \ldots, \partial_n(f)(x)) \).

Fonctions de classe \(C^1 \) sur \(\mathbb{R}^n \).

Les fonctions polynomiales de \(n \) variables sont des fonctions de classe \(C^1 \) sur \(\mathbb{R}^n \). Résultat admis.

Somme, produit, quotient.

La composition d’une fonction de classe \(C^1 \) sur \(\mathbb{R}^n \) à valeurs dans un intervalle \(I \) de \(\mathbb{R} \) par une fonction de classe \(C^1 \) sur \(I \) à valeurs dans \(\mathbb{R} \) est de classe \(C^1 \).

Résultats admis.

\[f(x + h) = f(x) + \langle \nabla(f)(x), h \rangle + \|h\| \varepsilon(h) \text{ où } \varepsilon(0) = 0 \text{ et } \varepsilon \text{ continue en } 0. \]
b) Dérivée directionnelle

Droite D passant par x, de vecteur directeur u.

Si f est de classe C^1, dérivée de la fonction g définie sur \mathbb{R} par :
\[g(t) = f(x + th). \]
Dérivée directionnelle de f au point x dans la direction h.

Paramétrisation : $t \mapsto x + tu$, $t \in \mathbb{R}$.

\[g'(t) = \langle \nabla(f)(x + th), h \rangle. \]

\[g'(0) = \langle \nabla(f)(x), h \rangle. \]

On en déduira une interprétation géométrique du gradient dans le cas où h est un vecteur de norme 1.

c) Recherche d’extremum : condition d’ordre 1

Définition d’un extremum local, d’un extremum global.

Condition nécessaire du premier ordre.
Point critique.

Si une fonction f de classe C^1 sur \mathbb{R}^n admet un extremum local en un point x, alors $\nabla f(x) = 0$.
Les points où le gradient s’annule sont appelés points critiques. Toutes les dérivées directionnelles en ces points sont nulles.

III - Compléments de probabilités couples et n-uplets de v.a.r.

L’objectif est double :

- d’une part, consolider les acquis de première année concernant les variables aléatoires discrètes, et enrichir le champ des problèmes étudiés, avec, en particulier, l’étude simultanée de variables aléatoires (vecteurs aléatoires de \mathbb{R}^n);
- d’autre part, effectuer une étude élémentaire des lois continues usuelles discrètes ou à densité.

On fera des liens entre certaines lois dans le cadre des approximations et des convergences, ainsi que les liens entre statistique et probabilités dans le cadre de l’estimation.

Pour l’étude du cas discret, on pourra utiliser les notions et les énoncés classiques suivants sur les familles sommables absolument convergentes. Tout cours théorique sur les familles sommables est fortement déconseillé et on se limitera à une approche heuristique.

On admet que les manipulations ensemblistes classiques (produits finis, réunions dénombrables) d’ensembles dénombrables fournissent encore des ensembles dénombrables. On remarquera en particulier que l’ensemble $\mathbb{N} \times \mathbb{N}$ est dénombrable. Aucune difficulté ne sera soulevée sur ces notions, qui ne sont pas exigibles des étudiants, et tout exercice ou problème y faisant référence devra impérativement les rappeler.

Soit \mathcal{I} un ensemble dénombrable infini, indexé par \mathbb{N} sous la forme $I = \{ \varphi(n) ; n \in \mathbb{N} \}$ où φ est une bijection de \mathbb{N} dans \mathcal{I}. Si la série $\sum_{n \in \mathbb{N}} u_{\varphi(n)}$ converge absolument, alors sa somme est indépendante de l’indexation φ, et pourra également être notée $\sum_{i \in I} u_i$. L’étude de cette convergence n’est pas un objectif du programme. On dira alors que la série est absolument
convergente (ou converge absolument). Toutes les opérations (somme, produit, regroupement par paquets, etc.) sont alors licites. Ainsi :

- Si $I = \bigcup_{j \in J} I_j$ (union disjointe) avec J un ensemble dénombrable et I_j des ensembles dénombrables pour tout j, alors : $\sum_{i \in I} u_i = \sum_{j \in J} \sum_{k \in I_j} u_k$.

- Si I et J sont des ensembles dénombrables, alors : $\left(\sum_{i \in I} u_i \right) \times \left(\sum_{j \in J} v_j \right) = \sum_{(i, j) \in I \times J} u_i v_j$.

On admettra que les théorèmes ou les techniques classiques concernant les séries s’étendent dans ce cadre.

1 - Compléments sur les variables aléatoires réelles

a) Généralités sur les variables aléatoires réelles

σ-algèbre B des boréliens. Aucun développement théorique sur la tribu des boréliens n’est au programme.

σ-algèbre associée à une variable aléatoire X. On admettra que pour tout borélien B et pour toute variable aléatoire réelle X définie sur (Ω, A), $[X \in B]$ appartient à A.

Une somme, un produit de variables aléatoires sont des variables aléatoires. Notation A_X. C’est la plus petite tribu contenant les événements $[X \leq x]$ pour tout réel x. Elle représente l’information fournie par X.

Résultat admis.

b) Espérance et conditionnement pour les variables aléatoires discrètes

Si X et Y sont deux variables aléatoires discrètes vérifiant $0 \leq |X| \leq Y$ presque sûrement, et si Y admet une espérance, alors X admet également une espérance. Dans ce cas, $|E(X)| \leq E(Y)$. Résultat admis.

Croissance de l’espérance pour les variables aléatoires discrètes. Résultat admis.

Espérance conditionnelle. Si A est un événement de probabilité non nulle, $E(X|A)$ est l’espérance de X, si elle existe, pour la probabilité conditionnelle P_A.

38
Formule de l’espérance totale.

Soit X une variable aléatoire discrète définie sur (Ω, A, P), soit (A_n) un système complet d’événements et J l’ensemble des entiers n tels que $P(A_n) \neq 0$. Alors X admet une espérance pour P si et seulement si la série :

$$
\sum_{(x,n) \in X(\Omega) \times J} x \, P_{A_n}([X = x]) \, P(A_n)
$$

couvre absolument. Dans ce cas, pour tout n dans J, l’espérance $E(X|A_n)$ est définie et

$$
E(X) = \sum_{n \in J} E(X|A_n)P(A_n).
$$

c) Compléments d’analyse

Reste d’une intégrale convergente.

Pratique de l’intégrale par parties pour les intégrales sur un intervalle quelconque.

Changement de variables.

L’intégration par parties sera pratiquée pour des intégrales sur un segment, on effectuera ensuite un passage à la limite.

Si f est continue sur $]a,b[$, si φ est une bijection de $]\alpha, \beta[$ sur $]a,b[$, croissante et de classe C^1, alors les intégrales

$$
\int_a^b f(u) du \quad \text{et} \quad \int_a^\beta f(\varphi(t))\varphi'(t) dt
$$

deviennent de même nature et en cas de convergence sont égales.

Énoncé analogue dans le cas où φ est décroissante.

Les changements de variables non affines devront être indiqués aux candidats.

d) Compléments sur les variables aléatoires à densité

La notion générale d’espérance ou des moments d’ordre supérieur d’une variable aléatoire réelle quelconque est hors d’atteinte dans le cadre de ce programme. Néanmoins, on admettra que le théorème de transfert permet de calculer l’espérance de $g(X)$ dans le cas où X est une variable aléatoire à densité.

Exemples simples de calculs de fonctions de répartition et de densités de fonctions d’une variable aléatoire à densité.

Rappel de première année pour des densités de variables aléatoires de la forme $aX + b$ ($a \neq 0$). En complément de la première année, les étudiants devront savoir retrouver les lois de X^2 et $\varphi(X)$ avec φ de classe C^1 strictement monotone sur $X(\Omega)$.

39
Théorème de transfert.

Si X est une variable aléatoire ayant une densité f_X nulle en dehors de l’intervalle $]a,b[,$ avec $-\infty < a < b < +\infty,$ et si g est une fonction continue sur $]a,b[$ éventuellement privé d’un nombre fini de points, $E(g(X))$ existe et est égale à
\[\int_a^b g(t)f_X(t)\,dt \] si et seulement si cette intégrale converge absolument.
On pourra le démontrer dans le cas où g est de classe $C^1,$ avec g' strictement positive (ou strictement négative) et le vérifier dans des cas simples.
Cette démonstration n’est pas exigible.
Résultat admis.

Exemples de variables aléatoires n’admettant pas d’espérance ou de variance.

Notation $m_r(X) = E(X^r).$

Croissance de l’espérance pour les variables aléatoires à densité.
Variance, écart-type. Variables aléatoires centrées, centrées réduites.
Variance d’une variable aléatoire suivant une loi usuelle (uniforme sur un intervalle, exponentielle, normale).

Moment d’ordre $r \ (r \in \mathbb{N}^*).$

e) Compléments sur les lois usuelles

Lois $\gamma.$ Espérance et variance d’une variable aléatoire suivant une loi $\gamma.$

Transformées affines de variables aléatoires suivant des lois normales.

Propriété de la fonction de répartition de la loi normale centrée réduite.

2 - Couples de variables aléatoires

a) Cas général ; indépendance
Loi d’un couple de variables aléatoires réelles.

Si deux couples \((X_1, Y_1)\) et \((X_2, Y_2)\) ont même loi et si \(g\) est une fonction continue sur \(\mathbb{R}^2\) à valeurs dans \(\mathbb{R}\), alors les variables aléatoires \(g(X_1, Y_1)\) et \(g(X_2, Y_2)\) ont la même loi.

Indépendance de deux variables aléatoires.

Caractérisations de l’indépendance de deux variables aléatoires.

Espérance conditionnelle dans le cas de l’indépendance.

b) Couples de variables aléatoires réelles discrètes

Caractérisation de la loi d’un couple \((X, Y)\) de variables aléatoires discrètes.

Caractérisation de l’indépendance de deux variables aléatoires discrètes.

Loi de la somme de deux variables aléatoires discrètes et indépendantes, produit de convolution discret.
Stabilité des lois binomiales et de Poisson.

Loi d’une variable aléatoire \(Z = g(X,Y) \) où \(g \) est une fonction définie sur l’ensemble des valeurs prises par le couple \((X,Y) \).

Espérance de \(Z = g(X,Y) \) et théorème de transfert.

Linéarité.

Espérance d’un produit de variables aléatoires discrètes indépendantes.

Covariance de deux variables aléatoires discrètes admettant un moment d’ordre 2.

Propriétés.

Formule de Huygens.

Coefficient de corrélation linéaire.

Propriétés.

Variance de la somme de deux variables aléatoires discrètes.

\[\begin{align*}
\text{c) Couples de variables aléatoires réelles à densité} \\
\text{En cas d’utilisation du produit de convolution, la preuve de sa légitimité n’est pas exigible des candidats.} \\
\text{Linéarité, positivité et croissance de l’espérance.}
\end{align*} \]
Densité de la somme \(Z = X + Y \) de deux variables aléatoires à densité indépendantes, produit de convolution.

Stabilité de la loi \(\gamma \) pour la somme.

Stabilité de la loi normale pour la somme.

Espérance d’un produit de variables aléatoires à densité indépendantes.

Variance de la somme de deux variables aléatoires à densité indépendantes.

Si la fonction \(h \) définie par la relation
\[h(x) = \int_{-\infty}^{+\infty} f_X(t)f_Y(x-t)dt \]
est définie et continue sauf peut-être en un nombre fini de points, c’est une densité de \(Z \).
C’est le cas si \(f_X \) (ou \(f_Y \)) est bornée.
Si \(X_1 \) et \(X_2 \) sont deux variables aléatoires indépendantes suivant respectivement des lois \(\gamma(\nu_1) \) et \(\gamma(\nu_2) \), alors \(X_1 + X_2 \mapsto \gamma(\nu_1 + \nu_2) \).

Si \(X \) et \(Y \) sont deux variables aléatoires à densité indépendantes admettant une espérance, alors \(XY \) admet également une espérance et \(E(XY) = E(X)E(Y) \). Résultat admis.
Résultat admis.

3 - \(n \)-uplets de variables aléatoires réelles ; généralisation des propriétés de l’espérance et de la variance

Dans cette partie, on étend la notion de loi de couple de variables aléatoires à un vecteur aléatoire, puis, de manière intuitive, la notion d’espérance à une somme de variables aléatoires admettant chacune une espérance. La définition de l’espérance générale ou des moments d’une variable aléatoire dans un cadre quelconque n’étant pas au programme, toute difficulté s’y ramenant est à écarter. On admettra que les propriétés opératoires usuelles de l’espérance et la variance se généralisent aux variables aléatoires quelconques.

Loi d’un vecteur aléatoire à valeurs dans \(\mathbb{R}^n \).
Loi marginale.

Caractérisation de la loi d’un vecteur aléatoire discret à valeurs dans \(\mathbb{R}^n \).
Si deux vecteurs \((X_1, X_2, \ldots, X_n) \) et \((Y_1, Y_2, \ldots, Y_n) \) ont même loi et si \(g \) est une fonction continue sur \(\mathbb{R}^n \) à valeurs dans \(\mathbb{R} \), alors les variables aléatoires réelles \(g(X_1, X_2, \ldots, X_n) \) et \(g(Y_1, Y_2, \ldots, Y_n) \) ont même loi.
Espérance d’une somme de variables aléatoires.

La loi d’un vecteur \((X_1, \ldots, X_n) \) de variables aléatoires réelles est donnée par la fonction
\[F_{(X_1,\ldots,X_n)}(x_1,\ldots,x_n) = P \left(\bigcap_{i=1}^{n} [X_i \leq x_i] \right) \].
Aucune difficulté ne sera soulevée sur cette notion.

Aucune difficulté ne sera soulevée.
Résultat admis.

Si \(X \) et \(Y \) admettent une espérance, \(X + Y \) admet une espérance et \(E(X+Y) = E(X) + E(Y) \).
Généralisation à \(n \) variables aléatoires.
Résultats admis.
Croissance de l’espérance.

Si \(X \leq Y \) presque sûrement et si \(X \) et \(Y \) admettent une espérance, alors \(E(X) \leq E(Y) \).
Résultat admis.

Existence d’une espérance par domination.

Si \(X \) et \(Y \) sont deux variables aléatoires vérifiant \(0 \leq |X| \leq Y \) presque sûrement, et si \(Y \) admet une espérance, alors \(X \) admet également une espérance. Dans ce cas, \(|E(X)| \leq E(Y) \).
Résultat admis.

Indépendance mutuelle de \(n \) variables aléatoires réelles.

\(X_1, \ldots, X_n \) sont mutuellement indépendantes si et seulement si :
\[
F(x_1, \ldots, x_n) = \prod_{i=1}^{n} F_i(x_i)
\]

pour tous réels \(x_1, \ldots, x_n \).

Caractérisation de l’indépendance mutuelle de \(n \) variables aléatoires réelles.

- \(X_1, \ldots, X_n \) sont mutuellement indépendantes si et seulement si :
\[
P\left(\bigcap_{i=1}^{n} X_i \in I_i \right) = \prod_{i=1}^{n} P(X_i \in I_i)
\]

pour tous intervalles \(I_1, \ldots, I_n \) de \(\mathbb{R} \).

- \(X_1, \ldots, X_n \) sont mutuellement indépendantes si et seulement si toute famille d’événements \((A_1, \ldots, A_n) \), avec \(A_k \) élément de \(\mathcal{A}_{X_k} \), est une famille d’événements mutuellement indépendants.

Résultat admis.

Caractérisation de l’indépendance mutuelle de \(n \) variables aléatoires réelles discrètes.

\[
P\left(\bigcap_{i=1}^{n} X_i = x_i \right) = \prod_{i=1}^{n} P(X_i = x_i)
\]

pour tout \((x_1, \ldots, x_n) \in X_1(\Omega) \times \ldots \times X_n(\Omega)\).

Résultat admis.

Si \(X_1, X_2, \ldots, X_n \) sont indépendantes, toute variable aléatoire fonction de \(X_1, X_2, \ldots, X_p \) est indépendante de toute variable aléatoire fonction de \(X_{p+1}, X_{p+2}, \ldots, X_n \).
Résultat admis.

Espérance du produit de variables aléatoires indépendantes.

Si \(X \) et \(Y \) admettent une espérance et sont indépendantes, \(XY \) admet une espérance et \(E(XY) = E(X)E(Y) \).
Généralisation à \(n \) variables aléatoires mutuellement indépendantes.
Résultats admis.

Variance d’une somme de variables aléatoires indépendantes.

Si \(X \) et \(Y \) sont indépendantes et admettent une variance, \(X + Y \) admet une variance et \(V(X + Y) = V(X) + V(Y) \).
Généralisation à \(n \) variables aléatoires mutuellement indépendantes.
Résultats admis.
Somme de variables aléatoires de Bernoulli indépendantes de même paramètre.

Sommes de variables aléatoires indépendantes suivant des lois de Poisson, des lois binomiales.
Loi de la somme de n variables aléatoires indépendantes de loi $\mathcal{E}(1)$.

Indépendance mutuelle d’une suite infinie de variables aléatoires réelles discrètes.

La somme de n variables aléatoires de Bernoulli indépendantes et de même espérance p suit la loi binomiale $\mathcal{B}(n, p)$.

Pour étudier la somme de n variables aléatoires indépendantes de loi $\mathcal{E}(\lambda)$, on se ramènera après multiplication par λ à une somme de n variables aléatoires indépendantes de loi $\mathcal{E}(1)$.
G -2ème semestre de deuxième année

I - Compléments d’algèbre bilinéaire

1 - Endomorphismes symétriques d’un espace euclidien, matrices symétriques

Endomorphismes symétriques.

Un endomorphisme est symétrique si et seulement si sa matrice dans une base orthonormée est symétrique.
Si f est un endomorphisme symétrique et si F est un sous-espace vectoriel stable par f, alors F^\perp est stable par f.
Les sous-espaces propres d’un endomorphisme symétrique f d’un espace vectoriel de dimension finie sont deux à deux orthogonaux.

2 - Projection orthogonale

Projection orthogonale sur un sous-espace vectoriel F.
Si (u_1, \ldots, u_k) est une base orthonormée de F, alors :
$$p_F(x) = \sum_{i=1}^k \langle x, u_i \rangle u_i.$$

Si p est un projecteur, alors p est un projecteur orthogonal si et seulement si c’est un endomorphisme symétrique.
Caractérisation par minimisation de la norme.

Un endomorphisme f d’un espace vectoriel euclidien E est symétrique si et seulement si pour tout couple (x, y) de vecteurs de E, on a :
$$\langle f(x) , y \rangle = \langle x , f(y) \rangle.$$

Si $(u_k)_{1 \leq k \leq p}$ sont p vecteurs propres d’un endomorphisme symétrique f associés à des valeurs propres distinctes, alors la famille $(u_k)_{1 \leq k \leq p}$ est une famille orthogonale.

Notation p_F.

Si \mathcal{B} est une base orthonormée de E et si U_1, \ldots, U_k sont les vecteurs colonnes associés aux vecteurs u_1, \ldots, u_k dans la base \mathcal{B}, alors :
$$\text{Mat}_\mathcal{B}(p_F) = \sum_{i=1}^k U_i^t U_i.$$

$$v = p_F(x) \iff \|x - v\| = \min_{u \in F} \|x - u\|.$$

Application au problème des moindres carrés :
minimisation de $\|AX - B\|$ avec $A \in \mathcal{M}_{p,n}(\mathbb{R})$ de rang p, $B \in \mathcal{M}_{n,1}(\mathbb{R})$ et $X \in \mathcal{M}_{p,1}(\mathbb{R})$.
La formule donnant la valeur de X réalisant le minimum n’est pas exigible.

3 - Réduction des endomorphismes et des matrices symétriques
Si E est un espace vectoriel euclidien, tout endomorphisme symétrique de E est diagonalisable et ses sous-espaces propres sont orthogonaux.

Toute matrice symétrique réelle est diagonalisable avec une matrice de changement de base orthogonale.

Résultat admis.

Il existe une base B de E orthonormée composée de vecteurs propres de f.

Si A est symétrique réelle, il existe une matrice orthogonale P et une matrice diagonale D telles que $D = P^{-1}AP = ^{t}PAP$.

Si X_1, \ldots, X_n sont les colonnes de P, alors $(X_i)_{1 \leq i \leq n}$ est une base orthonormée de $\mathbb{M}_{n,1}(\mathbb{R})$, formée de vecteurs propres de A associés aux valeurs propres $\lambda_1, \ldots, \lambda_n$. On a :

$$A = \sum_{i=1}^{n} \lambda_i X_i ^{t}X_i.$$

II - Fonctions réelles de n variables ; recherche d’extrema

L’objectif est d’arriver à une bonne maitrise des problèmes d’extrema à partir d’un minimum d’outils théoriques. L’espace \mathbb{R}^n sera muni de la norme euclidienne usuelle.

La détermination de la nature topologique d’un ensemble n’est pas un objectif du programme ; elle devra toujours être précisée. Néanmoins, il est nécessaire de sensibiliser les étudiants aux notions d’ouverts et de fermés. Les étudiants ont été familiarisés avec les fonctions continues sur \mathbb{R}^n au troisième semestre, aussi on s’appuiera, pour mener une initiation à la topologie de \mathbb{R}^n, sur les sous-ensembles de \mathbb{R}^n définis par des inégalités du type $\{x \in \mathbb{R}^n / \varphi(x) < a\}$ ou $\{x \in \mathbb{R}^n / \varphi(x) \leq a\}$ où φ est une fonction continue sur \mathbb{R}^n. On donnera également la définition d’un ensemble borné.

L’étude de fonctions de n variables à valeurs dans \mathbb{R} se limitera à des fonctions définies sur des sous-ensembles de \mathbb{R}^n pouvant être définis simplement (réunion, intersection finies) à l’aide des ensembles fermés ou ouverts précédents.

Les résultats seront énoncés dans le cas de fonctions de n variables. Pour les démonstrations, on pourra se limiter aux cas $n = 2$ ou $n = 3$.

Aucune des démonstrations de ce chapitre n’est exigible des étudiants.

Dans ce paragraphe, h désigne un vecteur de \mathbb{R}^n et H la colonne coordonnée correspondante.

1 - Extension de la notion de fonction réelle de n variables

Dans ce paragraphe, on étend à des fonctions définies sur un sous-ensemble de \mathbb{R}^n, les notions et définitions vues au troisième semestre pour des fonctions définies sur \mathbb{R}^n. Toute difficulté concernant la détermination de la classe d’une fonction est exclue.

Extension de la notion de continuité aux fonctions définies sur un sous-ensemble de \mathbb{R}^n.

Aucune difficulté théorique ne sera soulevée.

Extension de la notion de fonctions C^1 aux fonctions définies sur un ouvert de \mathbb{R}^n.

Aucune difficulté théorique ne sera soulevée.
Pour les fonctions C^1 définies sur un ouvert de \mathbb{R}^n: extension des notions de dérivées partielles, gradient, dérivée directionnelle, développement limité d’ordre 1.

2 - Fonctions de classe C^2

Dérivées partielles d’ordre 2.

Fonctions de classe C^2 sur un ouvert O de \mathbb{R}^n.

Opérations sur les fonctions de classe C^2.

Théorème de Schwarz.

Matrice hessienne en un point x.

Forme quadratique définie sur \mathbb{R}^n associée à une matrice symétrique réelle A.

Existence et unicité d’un développement limité d’ordre 2 d’une fonction de classe C^2 sur un ouvert O.

Dérivée seconde directionnelle de f au point x dans la direction h.

Notation $\partial^2_{ij}(f)$.

$\partial^2_{ij}(f) = \partial_i(\partial_j(f))$.

Les fonctions polynômiales de n variables sont de classe C^2 sur \mathbb{R}^n. Résultat admis.

Sommes, produits, quotients.

La composition d’une fonction de classe C^2 sur O à valeurs dans un intervalle I de \mathbb{R} par une fonction de classe C^2 sur I à valeurs dans \mathbb{R} est de classe C^2.

Résultats admis.

Si f est de classe C^2 sur un ouvert O de \mathbb{R}^n, alors pour tout point x de O et pour tout couple (i,j) d’entiers compris entre 1 et n :

$\partial^2_{ij}(f)(x) = \partial^2_{ji}(f)(x)$.

Théorème admis.

Notation $\nabla^2(f)(x)$.

Si f est de classe C^2 sur un ouvert O, alors la matrice hessienne est symétrique en tout point de O.

$q(h) = \forall HAH$.

$\forall x + h = f(x) + \langle \nabla(f)(x), h \rangle + \frac{1}{2}q_x(h) + |h|^2 \varepsilon(h)$

où $\varepsilon(0) = 0$, ε continue en 0 et q_x est la forme quadratique associée à la matrice hessienne $\nabla^2(f)(x)$.

Résultat admis.

La dérivée seconde directionnelle de f au point x dans la direction h est $q_x(h)$.

Si $g(t) = f(x + th)$, alors $g''(t) = q_{x+th}(h)$ et donc $g''(0) = q_x(h)$.

3 - Recherche d’extrema

Dans un premier temps, on étendra rapidement les notions vues au troisième semestre à une fonction définie sur un sous-ensemble de \mathbb{R}^n.

a) Définition

Définition d’un extremum local, d’un extremum global.
b) Extrema sur un ensemble fermé borné

Une fonction continue sur une partie fermée bornée admet un maximum global et un minimum global.

Application à l’encadrement d’une forme quadratique sur \mathbb{R}^n.

Résultat admis.

Si q est une forme quadratique associée à une matrice symétrique A, alors q admet un maximum global et un minimum global sur le fermé borné $\{ x \in \mathbb{R}^n / \|x\| = 1 \}$.

Il existe alors deux réels α et β tels que pour tout élément h de \mathbb{R}^n :

$$\alpha \| h \|^2 \leq q(h) \leq \beta \| h \|^2.$$

c) Condition d’ordre 1

Condition nécessaire du premier ordre.

Point critique.

Si une fonction de classe C^1 sur un ouvert \mathcal{O} de \mathbb{R}^n admet un extremum local en un point x_0 de \mathcal{O}, alors $\nabla(f)(x_0) = 0$.

Les points où le gradient s’annule sont appelés points critiques. Toutes les dérivées directionnelles en ces points sont nulles.

d) Exemples de recherches d’extrema sous une contrainte quelconque

Dans tout ce paragraphe, \mathcal{O} désigne un ouvert de \mathbb{R}^n et φ désigne une fonction de classe C^1 sur \mathcal{O}. On note alors $\mathcal{C} = \{ x \in \mathcal{O} / \varphi(x) = c \}$ l’ensemble des points vérifiant la contrainte $\varphi(x) = c$.

On se placera dans le cadre où $\nabla(\varphi)(x)$ est non nul pour tout élément x de \mathcal{C} ; on dira alors que la contrainte est non critique. L’étude d’une fonction le long de sa frontière est l’une des applications de la maximisation sous contrainte.

Sur des exemples, on sensibilisera les étudiants à une interprétation graphique de l’optimisation sous contrainte.

Définition d’un extremum local ou global sous la contrainte $\varphi(x) = c$ d’une fonction f définie sur \mathcal{O}.

Condition nécessaire du premier ordre pour un extremum sous la contrainte non critique \mathcal{C}.

Si f est une fonction de classe C^1 sur \mathcal{O}, pour que f atteigne un extremum local en x_0 sous la contrainte non critique \mathcal{C}, il faut qu’il existe un réel λ tel que :

$$\begin{cases}
\varphi(x_0) = c \\
\nabla(f)(x_0) = \lambda \nabla(\varphi)(x_0)
\end{cases}$$

Résultat admis.

On ne soulèvera pas de difficulté théorique et on se limitera à des exemples simples.
Application à l’encadrement d’une forme quadratique : cas d’égalité.

Si \(q \) est une forme quadratique associée à une matrice symétrique \(A \), alors \(q \) admet un maximum global (respectivement un minimum global) sous la contrainte \(\| x \| = 1 \), en un point correspondant à un vecteur propre de la matrice \(A \) associé à la plus grande valeur propre (respectivement la plus petite).

e) Condition d’ordre 2

Étude locale d’une fonction \(f \) de classe \(C^2 \) sur un ouvert \(\mathcal{O} \) en un point critique.

Point selle (ou col).

Exemples de recherche d’extrema globaux.

On pourra faire une étude directe du signe sur \(\mathcal{O} \) de \(f(x) - f(x_0) \).

Dans les situations qui s’y prêtent, on pourra étudier le cas où pour tout \(x \) de \(\mathcal{O} \), \(q_x \) est positive (ou négative), par exemple en appliquant la formule de Taylor avec reste intégral à la fonction \(g \) définie par \(g(t) = f(x_0 + th) \).

f) Recherche d’extrema sous contrainte d’égalités linéaires

Dans tout ce paragraphe \(\mathcal{C} \) désigne l’ensemble des solutions d’un système linéaire

\[
\begin{align*}
g_1(x) &= b_1 \\
\vdots &= \vdots \\
g_p(x) &= b_p
\end{align*}
\]

et \(\mathcal{H} \) l’ensemble des solutions du système homogène associé.

Condition nécessaire du premier ordre sous la contrainte \(\mathcal{C} \).

Point critique pour l’optimisation sous contrainte.
Exemples de recherche d’extrema globaux sous contrainte d’égalités linéaires.

On pourra faire une étude directe du signe sur \(\mathcal{O} \) de \(f(x) - f(x_0) \). On pourra, dans les situations qui s’y prêtent, étudier le cas où pour tout \(x \) de \(\mathcal{C} \cap \mathcal{O} \) et tout \(h \) de \(\mathcal{H} \) on a \(q_x(h) \geq 0 \) (respectivement \(q_x(h) \leq 0 \)).

III - Probabilités : convergences, estimation

1 - Convergences et approximations

a) Convergence en probabilité

On pourra démontrer ces inégalités dans le cas d’une variable aléatoire discrète ou à densité.

Inégalité de Markov. Si \(X \) est une variable aléatoire positive admettant une espérance, alors pour tout réel \(a \) strictement positif :

\[
P(\{X \geq a\}) \leq \frac{E(X)}{a}.
\]

On pourra appliquer cette inégalité à \(Y = |X|^r \), \(r \in \mathbb{N}^* \).

Inégalité de Bienaymé-Tchebychev. Si \(X \) est une variable aléatoire admettant un moment d’ordre 2, alors :

\[
\forall \varepsilon > 0, \quad P(\{|X - E(X)| \geq \varepsilon\}) \leq \frac{V(X)}{\varepsilon^2}.
\]

Convergence en probabilité. La suite \((X_n)_{n \in \mathbb{N}^*} \) converge en probabilité vers \(X \) si :

\[
\forall \varepsilon > 0, \quad \lim_{n \to +\infty} P(\{|X_n - X| \geq \varepsilon\}) = 0.
\]

Loi faible des grands nombres pour une suite de variables aléatoires indépendantes admettant une même espérance et une même variance.

Soit \((X_n)_{n \in \mathbb{N}^*} \) une suite de variables aléatoires indépendantes ayant même espérance \(m \) et même variance et soit \(\overline{X}_n = \frac{X_1 + \ldots + X_n}{n} \). Alors :

\[
\forall \varepsilon > 0, \quad \lim_{n \to +\infty} P(\{|\overline{X}_n - m| \geq \varepsilon\}) = 0.
\]

Composition par une fonction continue. Si \(X_n \overset{p}{\to} X \) et si \(f \) est une fonction continue sur \(\mathbb{R} \) à valeurs réelles, alors \(f(X_n) \overset{p}{\to} f(X) \).

Résultat admis.

b) Convergence en loi
Définition de la convergence en loi d’une suite \((X_n)_{n \in \mathbb{N}^*}\) de variables aléatoires vers \(X\).

Cas où les \(X_n\) et \(X\) prennent leurs valeurs dans \(\mathbb{Z}\).

Convergence en loi d’une suite de variables aléatoires suivant la loi binomiale \(\mathcal{B}(n, \lambda/n)\) vers une variable aléatoire suivant la loi de Poisson de paramètre \(\lambda\).

Théorème de Slutsky.

Composition par une fonction continue.

Théorème limite central.

Notation \(X_n \xrightarrow{d} X\).
La suite \((X_n)_{n \in \mathbb{N}^*}\) converge en loi vers \(X\) si et seulement si en tout point de continuité \(x\) de \(F_X\) :
\[
\lim_{n \to +\infty} F_{X_n}(x) = F_X(x).
\]
La suite \((X_n)_{n \in \mathbb{N}^*}\) converge en loi vers \(X\) si et seulement si :
\[
\forall k \in \mathbb{Z}, \quad \lim_{n \to +\infty} P([X_n = k]) = P([X = k]).
\]

Si \((X_n)_{n \in \mathbb{N}^*}\) converge en loi vers \(X\) et si \((Y_n)_{n \in \mathbb{N}^*}\) converge en probabilité vers une constante \(c\), alors \((X_n + Y_n)_{n \in \mathbb{N}^*}\) converge en loi vers \(X + c\) et \((X_n Y_n)_{n \in \mathbb{N}^*}\) converge en loi vers \(cX\).

Résultats admis.

Si \((X_n)_{n \in \mathbb{N}^*}\) converge en loi vers \(X\) et si \(f\) est une fonction continue sur \(\mathbb{R}\) à valeurs réelles, alors \((f(X_n))_{n \in \mathbb{N}^*}\) converge en loi vers \(f(X)\).

Résultat admis.

Si \((X_n)_{n \in \mathbb{N}^*}\) est une suite de variables aléatoires indépendantes et de même loi, admettant une espérance \(m\) et une variance \(\sigma^2\) non nulle, si on note \(\bar{X}_n = X_1 + \ldots + X_n/n\), alors la suite de variables aléatoires centrées réduites \(\bar{X}_n = \sqrt{n} \left(\frac{X_n - m}{\sigma}\right)\) converge en loi vers une variable aléatoire suivant la loi normale centrée réduite.

D’où, on a pour tout \((a, b)\) tel que \(-\infty \leq a \leq b \leq +\infty:\n\[
\lim_{n \to +\infty} P([a \leq \bar{X}_n \leq b]) = \int_a^b \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right)dt.
\]

Résultats admis.

Toutes les indications devront être fournies aux candidats quant à la justification de l’utilisation des approximations.

2 - Estimation

L’objectif de cette partie est d’introduire le vocabulaire et la démarche de la statistique inférentielle en abordant, sur quelques cas simples, le problème de l’estimation, ponctuelle ou par intervalle de confiance. On se restreindra à une famille de lois de probabilités indexées par un paramètre
scalaire (ou vectoriel) dont la valeur (scalaire ou vectorielle) caractérise la loi. On cherche alors à estimer la valeur du paramètre (ou une fonction simple de ce paramètre) à partir des données disponibles.

Dans ce contexte, on considère un phénomène aléatoire et on s’intéresse à une variable aléatoire réelle X qui lui est liée, dont on suppose que la loi de probabilité n’est pas complètement spécifiée et appartient à une famille de lois dépendant d’un paramètre θ décrit par un sous-ensemble Θ de R (éventuellement de R²). Le paramètre θ est une quantité inconnue, fixée dans toute l’étude, que l’on cherche à déterminer ou pour laquelle on cherche une information partielle.

Le problème de l’estimation consiste alors à estimer la vraie valeur du paramètre θ ou de g(θ) (fonction à valeurs réelles du paramètre θ), à partir d’un échantillon de données x₁, …, xₙ obtenues en observant n fois le phénomène. Cette fonction du paramètre représentera en général une valeur caractéristique de la loi inconnue comme son espérance, sa variance, son étendue…

On supposera que cet échantillon est la réalisation de n variables aléatoires X₁, …, Xₙ définies sur un même espace probabilisable (Ω, A) muni d’une famille de probabilités (Pθ)θ∈Θ. Les X₁, …, Xₙ seront supposées P₀-indépendantes et de même loi que X pour tout θ.

On appellera estimateur de g(θ) toute variable aléatoire réelle de la forme ϕ(X₁, X₂, …, Xₙ) où ϕ est une fonction de Rⁿ dans R, éventuellement dépendante de n, et indépendante de θ, dont la réalisation après expérience est envisagée comme estimation de g(θ).

Si Tₙ est un estimateur, on notera, lorsque ces valeurs existent, E₀(Tₙ) l’espérance de Tₙ et V₀(Tₙ) la variance de Tₙ, pour la probabilité P₀.

a) Estimation ponctuelle

Estimer ponctuellement g(θ) par ϕ(x₁, …, xₙ) où ϕ(X₁, X₂, …, Xₙ) est un estimateur de g(θ) et (x₁, …, xₙ) est une réalisation de l’échantillon (X₁, …, Xₙ), c’est décider d’accorder à g(θ) la valeur ϕ(x₁, …, xₙ).

Exemples de n-échantillons associés à une loi de Bernoulli B(1, p) avec θ = p.

Désignons un estimateur.

Un estimateur de g(θ) est une variable aléatoire de la forme Tₙ = ϕ(X₁, …, Xₙ). La réalisation ϕ(x₁, …, xₙ) de l’estimateur Tₙ est l’estimation de g(θ). Cette estimation ne dépend que de l’échantillon (x₁, x₂, …, xₙ) observé.

Exemples simples d’estimateurs.

Exemple de la moyenne empirique.

\[\frac{1}{n} \sum_{i=1}^{n} X_i \]

Biais d’un estimateur.

Si pour tout θ de Θ, Tₙ admet une espérance, on appelle biais de Tₙ en g(θ) le réel

\[b_θ(Tₙ) = E_θ(Tₙ) - g(θ) \]

Estimateur sans biais.

L’estimateur Tₙ de g(θ) est sans biais si pour tout θ de Θ, E₀(Tₙ) = g(θ).

Suite (Tₙ)ₙ≥1 d’estimateurs.

Chaque Tₙ est de la forme ϕ(X₁, X₂, …, Xₙ).
Estimateur convergent. Une suite d’estimateurs \((T_n)_{n \geq 1}\) de \(g(\theta)\) est convergente si pour tout \(\theta\), la suite \((T_n)_{n \geq 1}\) converge en probabilité vers \(g(\theta)\). Par abus de langage on dit aussi que l’estimateur est convergent.

Composition par une fonction continue. Si \((T_n)_{n \geq 1}\) est une suite convergente d’estimateurs de \(g(\theta)\) et si \(f\) est une fonction continue sur \(\mathbb{R}\) à valeurs réelles, alors \((f(T_n))_{n \geq 1}\) est une suite convergente d’estimateurs de \(f(g(\theta))\).

Estimateur asymptotiquement sans biais. Une suite \((T_n)_{n \geq 1}\) d’estimateurs de \(g(\theta)\) est asymptotiquement sans biais si pour tout \(\theta\) de \(\Theta\),

\[
\lim_{n \to +\infty} E_\theta(T_n) = g(\theta).
\]

Risque quadratique d’un estimateur. Si pour tout \(\theta\) de \(\Theta\), \(T_n\) admet un moment d’ordre 2, le risque quadratique de \(T_n\) en \(\theta\), noté \(r_\theta(T_n)\), est le réel :

\[
r_\theta(T_n) = E_\theta((T_n - g(\theta))^2).
\]

Décomposition biais-variance du risque quadratique d’un estimateur.

\[
r_\theta(T_n) = b_\theta(T_n)^2 + V_\theta(T_n).
\]

Condition suffisante de convergence. Si pour tout \(\theta\) de \(\Theta\), \(\lim_{n \to +\infty} r_\theta(T_n) = 0\), alors la suite d’estimateurs \((T_n)_{n \geq 1}\) de \(g(\theta)\) est convergente. Cette convergence pourra être étudiée à l’aide de l’inégalité de Markov.

b) Estimation par intervalle de confiance, intervalle de confiance asymptotique

S’il existe des critères pour juger des qualités d’un estimateur ponctuel \(T_n\) de \(g(\theta)\) (biais, risque, convergence), aucune certitude ne peut jamais être apportée quant au fait que l’estimation donne la vraie valeur à estimer.

La démarche de l’estimation par intervalle de confiance consiste à trouver un intervalle aléatoire qui contienne \(g(\theta)\) avec une probabilité minimale donnée. L’utilisation dans certains cas du théorème limite central impose d’introduire la notion d’intervalle de confiance asymptotique.

Dans tout ce paragraphe \((U_n)_{n \geq 1}\) et \((V_n)_{n \geq 1}\) désigneront deux suites d’estimateurs de \(g(\theta)\) tels que pour tout \(\theta \in \Theta\) et pour tout \(n \geq 1\), \(P_\theta([U_n \leq V_n]) = 1\).

Intervalle de confiance.

Soit \(\alpha \in [0,1]\), \([U_n, V_n]\) est un intervalle de confiance de \(g(\theta)\) au niveau de confiance \(1 - \alpha\) si pour tout \(\theta\) de \(\Theta\),

\[
P_\theta([U_n \leq g(\theta) \leq V_n]) \geq 1 - \alpha.
\]

Sa réalisation est l’estimation de cet intervalle de confiance.

On distinguerait probabilité et confiance et on éclairerait ces notions à l’aide de simulations informatiques.
Intervalle de confiance asymptotique.

On appelle intervalle de confiance asymptotique de $g(\theta)$ au niveau de confiance $1 - \alpha$ une suite $([U_n, V_n])_{n \geq 1}$ vérifiant : pour tout θ de Θ, il existe une suite de réels (α_n) à valeurs dans $[0, 1]$, de limite α, telle que pour tout $n \geq 1$,
$$P_\theta([U_n \leq g(\theta) \leq V_n]) \geq 1 - \alpha_n.$$ Par abus de langage on dit aussi que $[U_n, V_n]$ est un intervalle de confiance asymptotique.

On pourra comparer, en majorant $p(1 - p)$ par $\frac{1}{3}$, les intervalles de confiance obtenus par l’inégalité de Bienaymé-Tchebychev, et les intervalles de confiance asymptotiques obtenus par l’approximation normale de la loi binomiale.

On pourra démontrer ce résultat dans le cas d’une loi admettant un moment d’ordre 4 : dans ce cas, la suite $(S_n)_{n \geq 1}$ des écarts-types empiriques converge en probabilité vers l’ecart-type σ inconnu, ce qui permet d’utiliser le théorème de Slutsky pour remplacer σ par S_n afin d’obtenir une estimation par intervalle de confiance asymptotique de l’espérance de la loi.

Estimation par intervalle du paramètre d’une variable aléatoire de Bernoulli.

Estimation par intervalle de confiance de l’espérance d’une loi admettant un moment d’ordre 2.
H - Travaux pratiques en 2ème année avec Scilab

En première année, les élèves ont acquis les bases de manipulation du logiciel Scilab. L’objectif de l’enseignement d’informatique de seconde année est de permettre aux étudiants d’utiliser Scilab de manière judicieuse et autonome pour illustrer ou modéliser des situations concrètes en mobilisant leurs connaissances mathématiques.

Les heures de travaux pratiques de mathématiques avec Scilab peuvent être organisées sous différentes formes selon les contenus à enseigner ; certaines séances, notamment celles nécessitant peu de manipulations logicielles de la part des étudiants, pourront avoir lieu en classe entière, les autres séances en groupes réduits.

Le programme d’informatique s’articule autour de six thèmes : statistiques descriptives univariées, statistiques descriptives bivariées, chaînes de Markov, fonctions de plusieurs variables, simulation de lois, estimation ponctuelle ou par intervalle de confiance.

L’ordre dans lequel les thèmes sont abordés est libre, mais il est préférable de mener ces activités en cohérence avec la progression du cours de mathématiques.

Dans certains thèmes, il s’avérera nécessaire d’introduire de nouvelles notions ou approches mathématiques. Celles-ci devront être explicitées en préambule des séances d’informatique et ne pourront en aucun cas être exigibles des étudiants. Certaines seront propres à un thème particulier, d’autres (comme par exemple les méthodes de Monte-Carlo) pourront au contraire être envisagées de manière transversale. Toutes les précisions nécessaires devront toujours être données lors de leur utilisation.

L’objectif de ces travaux pratiques n’est pas l’écriture de longs programmes mais l’assimilation de savoir-faire et de compétences spécifiés dans la liste des exigibles et rappelés en préambule de chaque thème.

Les exemples traités dans un thème devront être tirés, autant que possible, de situations réelles (traitement de données économiques, sociologiques, historiques, démographiques, en lien avec le monde de l’entreprise ou de la finance, etc), en faisant dès que possible un rapprochement avec les autres disciplines.

1 - Liste des exigibles

1 - Savoir-faire et compétences
C1 : Produire et interpréter des résumés numériques et graphiques d’une série statistique (simple, double) ou d’une loi.
C2 : Modéliser et simuler des phénomènes (aléatoires ou déterministes) et les traduire en langage mathématique.
C3 : Représenter et exploiter le graphe d’une fonction d’une, deux ou trois variables.
C4 : Représenter et interpréter les différentes convergences.
C5 : Utiliser à bon escient la méthode de Monte-Carlo.
C6 : Porter un regard critique sur les méthodes d’estimation et de simulation.

2 - Nouvelles commandes

Toutes les commandes du programme de première année sont exigibles. Les seules nouvelles commandes exigibles des candidats sont indiquées dans ce paragraphe.

La connaissance des commandes suivantes ainsi que de leurs arguments est exigible des candidats :
sum, cumsum, mean, max, min, zeros, ones, eye, spec.

Les commandes suivantes devront avoir été manipulées par les étudiants mais la connaissance détaillée de leurs arguments n’est pas exigible des candidats :
cdfnor, plot2d, fplot2d, plot3d, fplot3d.

II - Liste des thèmes

1 - Statistiques descriptives univariées

(Durée indicative : 3 heures. Compétences développées : C1 et C6)
Dans ce paragraphe, on analysera des données statistiques, en insistant sur les représentations graphiques. On insistera sur le rôle des différents indicateurs de position et de dispersion étudiés.

Série statistique associée à un échantillon. Effectifs, fréquences, fréquences cumulées, diagrammes en bâtons, histogrammes.
Indicateurs de position : moyenne, médiane, mode, quantiles.
Indicateurs de dispersion : étendue, variance et écart-type empiriques, écart interquantile.

On pourra également utiliser les commandes : dsearch, tabul, pie stdeviation, median.

2 - Statistiques descriptives bivariées

(Durée indicative : 3 heures. Compétences développées : C1 et C6)
Série statistique à deux variables, nuage de points associé.
Point moyen \((\bar{x}, \bar{y})\) du nuage.
Covariance et coefficient de corrélation empiriques, droites de régression.

On tracera le nuage de points et les droites de régression et on pourra effectuer des pré-transformations pour se ramener au cas linéaire.
On différenciera les variables explicatives des variables à expliquer. On pourra utiliser les commandes : \texttt{stdeviation, corr}.

3 - Chaînes de Markov

(Durée indicative : 6 heures. Compétences développées : C2 et C4)

Ce thème sera l’occasion de revoir les simulations de lois discrètes étudiées en première année ainsi que d’appliquer les résultats et techniques d’algèbre linéaire étudiés au troisième semestre.
Matrice de transition.
Étude sur des exemples simples.
Comportement limite.

On pourra étudier par exemple l’indice de popularité d’une page Web (Page-Rank), modéliser l’évolution sociologique d’une société (passage d’individus d’une classe sociale à une autre) ou les systèmes de bonus-malus en assurances. Simulation et mise en évidence d’états stables avec la commande \texttt{grand(n, 'markov', M, x0)}.

4 - Fonctions de plusieurs variables

(Durée indicative : 3 heures. Compétences développées : C2 et C3)

Graphe d’une fonction de deux variables, lignes de niveau, plan affine tangent au graphe. Dérivées partielles et dérivées directionnelles, représentation du gradient.

À cette occasion, on pourra mettre en évidence l’orthogonalité du gradient avec les courbes de niveau d’une fonction de deux variables.
Programmation de fonctions variées permettant de mettre en évidence les notions d’extrema locaux ou globaux, avec ou sans contrainte. On pourra prendre des exemples issus de l’économie ou de la finance : minimisation du risque, maximisation du gain, etc.

5 - Simulation de lois

(Durée indicative : 6 heures. Compétences développées : C1, C2, C3 et C6)

Dans toutes les simulations effectuées, on pourra comparer les échantillons obtenus avec les distributions théoriques, en utilisant des diagrammes en bâtons et des histogrammes. On pourra aussi tracer la fonction de répartition empirique et la comparer à la fonction de répartition théorique.
Méthode d’inversion.

Méthodes de simulation d’une loi géométrique.

Simulations informatiques d’une loi normale par utilisation du théorème limite central appliqué à différentes lois.

Simulations de variables aléatoires discrètes et à densité variées.

6 - Estimation ponctuelle et par intervalle de confiance

(Durée indicative : 6 heures. Compétences développées : C2, C4, C5 et C6)

Méthode de Monte-Carlo : principe, garanties d’approximation.

Comparaison de différents estimateurs ponctuels d’un paramètre.

Comparaison des intervalles de confiance d’un paramètre obtenus par différentes méthodes.

Application de la méthode d’inversion pour la simulation par exemple des lois exponentielles ou de Cauchy.
On pourra mettre en évidence, grâce aux simulations, qu’une variable aléatoire suivant une loi de Cauchy n’admet pas d’espérance.
Utilisation d’une loi de Bernoulli et d’une boucle while, utilisation d’une loi exponentielle et de la fonction floor, utilisation du générateur grand.
Compareraison entre différentes méthodes de simulation d’une loi normale.
On pourra s’intéresser au cas particulier de 12 variables aléatoires indépendantes suivant une même loi uniforme.
On pourra faire le lien entre les lois exponentielles, les lois γ et de Poisson en modélisant des temps d’attente.

Cette méthode permet d’estimer des quantités qu’il est difficile de calculer explicitement mais qu’il est facile d’approcher par simulation (probabilités d’événements, espérances de variables aléatoires).
Ainsi, on pourra estimer par exemple les valeurs prises par la fonction de répartition de la somme ou du produit de deux variables aléatoires, ou encore, estimer le niveau réel, à rang n fini, d’intervalles de confiance asymptotiques.
On pourra utiliser des données issues de situations réelles ou créer plusieurs jeux de données obtenues grâce à la commande grand. Dans ce dernier cas, on pourra comparer les lois des estimateurs par exemple à l’aide d’histogrammes.
Estimation par intervalle de confiance du paramètre d’une loi de Bernoulli et de l’espérance d’une loi normale.
La comparaison pourra se faire en calculant les demi-largeurs moyennes des intervalles et leurs niveaux de confiance.
Série statistique à deux variables, nuage de points associé.
Point moyen (\bar{x}, \bar{y}) du nuage.
Covariance et coefficient de corrélation empiriques, droites de régression.

On tracera le nuage de points et les droites de régression et on pourra effectuer des pré-transformations pour se ramener au cas linéaire.
On différenciera les variables explicatives des variables à expliquer. On pourra utiliser les commandes : stdeviation, corr.

3 - Chaînes de Markov

(Durée indicative : 6 heures. Compétences développées : C2 et C4)

Ce thème sera l’occasion de revoir les simulations de lois discrètes étudiées en première année ainsi que d’appliquer les résultats et techniques d’algèbre linéaire étudiés au troisième semestre.

Matrice de transition.
Étude sur des exemples simples.
Comportement limite.

On pourra étudier par exemple l’indice de popularité d’une page Web (PageRank), modéliser l’évolution sociologique d’une société (passage d’individus d’une classe sociale à une autre) ou les systèmes de bonus-malus en assurance. Simulation et mise en évidence d’états stables avec la commande grand(n, ’markov’, M, x0).

4 - Fonctions de plusieurs variables

(Durée indicative : 3 heures. Compétences développées : C2 et C3)

Graphe d’une fonction de deux variables, lignes de niveau, plan affine tangent au graphe. Dérivées partielles et dérivées directionnelles, représentation du gradient.

À cette occasion, on pourra mettre en évidence l’orthogonalité du gradient avec les courbes de niveau d’une fonction de deux variables.

Programmation de fonctions variées permettant de mettre en évidence les notions d’extrema locaux ou globaux, avec ou sans contrainte. On pourra prendre des exemples issus de l’économie ou de la finance : minimisation du risque, maximisation du gain, etc.

5 - Simulation de lois

(Durée indicative : 6 heures. Compétences développées : C1, C2, C3 et C6)

Dans toutes les simulations effectuées, on pourra comparer les échantillons obtenus avec les distributions théoriques, en utilisant des diagrammes en bâtons et des histogrammes. On pourra aussi tracer la fonction de répartition empirique et la comparer à la fonction de répartition
théorique.
Méthode d’inversion.

Application de la méthode d’inversion pour la simulation par exemple des lois exponentielles ou de Cauchy.
On pourra mettre en évidence, grâce aux simulations, qu’une variable aléatoire suivant une loi de Cauchy n’admet pas d’espérance.

Méthodes de simulation d’une loi géométrique.

Utilisation d’une loi de Bernoulli et d’une boucle while, utilisation d’une loi exponentielle et de la fonction floor, utilisation du générateur grand.

Simulations informatiques d’une loi normale par utilisation du théorème limite central appliqué à différentes lois.

Comparaison entre différentes méthodes de simulation d’une loi normale.
On pourra s’intéresser au cas particulier de 12 variables aléatoires indépendantes suivant une même loi uniforme.

Simulations de variables aléatoires discrètes et à densité variées.

On pourra faire le lien entre les lois exponentielles, les lois γ et de Poisson en modélisant des temps d’attente.

6 - Estimation ponctuelle et par intervalle de confiance

(Durée indicative : 6 heures. Compétences développées : C2, C4, C5 et C6)

Méthode de Monte-Carlo : principe, garanties d’approximation.

Cette méthode permet d’estimer des quantités qu’il est difficile de calculer explicitement mais qu’il est facile d’approcher par simulation (probabilités d’événements, espérances de variables aléatoires).
Ainsi, on pourra estimer par exemple les valeurs prises par la fonction de répartition de la somme ou du produit de deux variables aléatoires, ou encore, estimer le niveau réel, à rang \(n \) fini, d’intervalles de confiance asymptotiques.

Comparaison de différents estimateurs ponctuels d’un paramètre.

On pourra utiliser des données issues de situations réelles ou créer plusieurs jeux de données obtenues grâce à la commande grand. Dans ce dernier cas, on pourra comparer les lois des estimateurs par exemple à l’aide d’histogrammes.
Comparaison des intervalles de confiance d’un paramètre obtenus par différentes méthodes.

Estimation par intervalle de confiance du paramètre d’une loi de Bernoulli et de l’espérance d’une loi normale. La comparaison pourra se faire en calculant les demi-largeurs moyennes des intervalles et leurs niveaux de confiance.
Fonctions de classe C^2 sur un ouvert \mathcal{O} de \mathbb{R}^n.

Opérations sur les fonctions de classe C^2.

Théorème de Schwarz.

Matrice hessienne en un point x.

Forme quadratique définie sur \mathbb{R}^n associée une matrice symétrique relle A.

Existence et unicité d’un développement limité d’ordre 2 d’une fonction de classe C^2 sur un ouvert \mathcal{O}.

Dérivée seconde directionnelle de f au point x dans la direction h.

Les fonctions polynomiales de n variables sont de classe C^2 sur \mathbb{R}^n. Résultat admis.

Somme, produit, quotient.

La composition d’une fonction de classe C^2 sur \mathcal{O} valeurs dans un intervalle I de \mathbb{R} par une fonction de classe C^2 sur I valeurs dans \mathbb{R} est de classe C^2. Résultats admis.

Si f est de classe C^2 sur un ouvert \mathcal{O} de \mathbb{R}^n, alors pour tout point x de \mathcal{O} et pour tout couple (i, j) d’entiers compris entre 1 et n :

$$\partial^2_{ij}(f)(x) = \partial^2_{ji}(f)(x).$$

Théorème admis.

Notation $\nabla^2(f)(x)$.

Si f est de classe C^2 sur un ouvert \mathcal{O}, alors la matrice hessienne est symétrique en tout point de \mathcal{O}.

$$q(h) = \langle H A H \rangle.$$

La dérivée seconde directionnelle de f au point x dans la direction h est $q_x(h)$.

Si $g(t) = f(x + th)$, alors $g''(t) = q_x(\theta h)$ et donc $g''(0) = q_x(h)$.

3 - Recherche d’extrema

Dans un premier temps, on tendra rapidement les notions vues au troisième semestre une fonction définie sur un sous-ensemble de \mathbb{R}^n.
a) Définition

DÉFINITION D’UN EXTREME LOCAL, D’UN EXTREME GLOBAUX.

b) Extrema sur un ensemble fermé borné

Une fonction continue sur une partie fermée bornée admet un maximum global et un minimum global.

Application l’encadrement d’une fonction continue qui est une matrice symétrique.

Résultat admis. Si q est une forme quadratique associée à un matrice symétrique A, alors q admet un maximum global et un minimum global sur l’ensemble borné $\{x \in \mathbb{R}^n/\|x\| = 1\}$.

Il existe alors deux rôles α et β tels que pour tout h de \mathbb{R}^n,

$$\alpha\|h\|^2 \leq q(h) \leq \beta\|h\|^2.$$}

c) Condition d’ordre 1

Condition nécessaire et suffisante du premier ordre.

Point critique.

Si une fonction de classe C^1 sur un ouvert \mathcal{O} de \mathbb{R}^n admet un extremum local en un point x_0 de \mathcal{O}, alors $\nabla(f)(x_0) = 0$.

Les points où le gradient s’annule sont appelés points critiques. Toutes les dérivées directionnelles en ces points sont nulles.

d) Exemples de recherches d’extrema sous une contrainte quelconque

DANS CE PARAGRAPHE, \mathcal{O} désigne un ouvert de \mathbb{R}^n et φ désigne une fonction de classe C^1 sur \mathcal{O}. On note alors $\mathcal{C} = \{x \in \mathcal{O}/\varphi(x) = c\}$ l’ensemble des points vérifiant la contrainte $\varphi(x) = c$. On se placera dans le cadre où $\nabla(\varphi)(x)$ est non nul pour tout x de \mathcal{C} ; on dira alors que la contrainte est non critique. L’étude d’une fonction le long de sa frontière est l’une des applications de la maximisation sous contrainte.
Sur des exemples, on sensibilisera les tudiant s une interprétation graphique de l’optimisation sous contrainte.

Définition d’un extremum local ou global sous la contrainte $\varphi(x) = c$ d’une fonction f définie sur \mathcal{O}.

Condition nécessaire du premier ordre pour un extremum sous la contrainte non critique \mathcal{C}.

Si f est une fonction de classe C^1 sur \mathcal{O}, pour que f atteigne un extremum local en x_0 sous la contrainte non critique \mathcal{C}, il faut qu’il existe un rel λ tel que :

$$
\begin{align*}
\varphi(x_0) &= c \\
\nabla(f)(x_0) &= \lambda \nabla(\varphi)(x_0)
\end{align*}
$$

Résultat admis.

On ne souvera pas de difficult thorique et on se limitera des exemples simples.

Si q est une forme quadratique associée une matrice symétrique A, alors q admet un maximum global (respectivement un minimum global) sous la contrainte $\|x\| = 1$, en un point correspondant un vecteur propre de la matrice A associé la plus grande valeur propre (respectivement la plus petite).

e) Condition d’ordre 2

Application l’encadrement d’une forme quadratique : cas d’galit.
Étude locale d’une fonction f de classe C^2 sur un ouvert \mathcal{O} en un point critique.

Si x_0 est un point critique de f :
- si $\text{Sp}(\nabla^2 f(x_0)) \subset \mathbb{R}^*_+$, alors f admet un minimum local en x_0,
- si $\text{Sp}(\nabla^2 f(x_0)) \subset \mathbb{R}^*_-$, alors f admet un maximum local en x_0,
- si $\text{Sp}(\nabla^2 f(x_0))$ contient deux réels non nuls de signes distincts, f n’admet pas d’extremum en x_0.

On fera le lien avec le signe de la forme quadratique q_{x_0}.

Point selle (ou col).

Exemples de recherche d’extrema globaux.

On pourra faire une étude directe du signe sur \mathcal{O} de $f(x) - f(x_0)$.
Dans les situations qui s’y prêtent, on pourra étudier le cas où pour tout x de \mathcal{O}, q_x est positive (ou négative), par exemple en appliquant la formule de Taylor avec reste intégral la fonction g définie par $g(t) = f(x_0 + th)$.

f) Recherche d’extrema sous contrainte d’égalités linéaires

Dans tout ce paragraphe \mathcal{C} désigne l’ensemble des solutions d’un système linéaire

\[
\begin{align*}
\begin{cases}
g_1(x) &= b_1 \\
\vdots &= \vdots \\
g_p(x) &= b_p
\end{cases}
\end{align*}
\]

et \mathcal{H} l’ensemble des solutions du système homogène associé.
Condition nécessaire du premier ordre sous la contrainte C. Si f est une fonction de classe C^1 sur un ouvert O, et si la restriction de f à C admet un extremum local en un point x_0, alors $\nabla(f)(x_0)$ est dans $\text{Vect}(\nabla(g_1)(x_0), \ldots, \nabla(g_p)(x_0))$. Pour tout h de H, la dérivée de f en x_0 dans la direction h est nulle. On remarquera que : $H^\perp = \text{Vect}(\nabla(g_1)(x_0), \ldots, \nabla(g_p)(x_0))$.

Point critique pour l’optimisation sous contrainte. Exemples de recherche d’extrema globaux sous contrainte d’égalités linéaires. On pourra faire une étude directe du signe sur O de $f(x) - f(x_0)$. On pourra, dans les situations qui s’y prêtent, étudier le cas où pour tout x de $C \cap O$ et tout h de H on a $q_u(h) \geq 0$ (respectivement $q_u(h) \leq 0$).

III - Probabilités : convergences, estimation

1 - Convergences et approximations - semaine 17

a) Convergence en probabilité

On pourra dmontrer ces inégalités dans le cas d’une variable aléatoire discrète ou densit.

Inégalité de Markov. Si X est une variable aléatoire positive admettant une espérance, alors pour tout reel a strictement positif :

$$P([X \geq a]) \leq \frac{E(X)}{a}.$$

On pourra appliquer cette inégalité $Y = |X|^r$, $r \in \mathbb{N}^*$.
Inégalité de Bienaymé-Tchebychev. Si X est une variable aléatoire admettant un moment d’ordre 2, alors :

$$\forall \varepsilon > 0, \quad P(\{|X - E(X)| \geq \varepsilon\}) \leq \frac{V(X)}{\varepsilon^2}.$$

Convergence en probabilité. La suite $(X_n)_{n \in \mathbb{N}^*}$ converge en probabilité vers X si :

$$\forall \varepsilon > 0, \quad \lim_{n \to +\infty} P(\{|X_n - X| \geq \varepsilon\}) = 0.$$

Notation $X_n \overset{p}{\to} X$.

Loi faible des grands nombres pour une suite de variables aléatoires indépendantes admettant une même espérance m et même variance et soit $\overline{X}_n = \frac{X_1 + \ldots + X_n}{n}$. Alors :

$$\forall \varepsilon > 0, \quad \lim_{n \to +\infty} P(\{|\overline{X}_n - m| \geq \varepsilon\}) = 0.$$

Composition par une fonction continue. Si $X_n \overset{p}{\to} X$ et si f est une fonction continue sur \mathbb{R}, valeurs reles, alors $f(X_n) \overset{p}{\to} f(X)$. Résultat admis.

b) Convergence en loi

Définition de la convergence en loi d’une suite $(X_n)_{n \in \mathbb{N}^*}$ de variables aléatoires vers X.

Notation $X_n \overset{c}{\to} X$. La suite $(X_n)_{n \in \mathbb{N}^*}$ converge en loi vers X si et seulement si en tout point de continuité x de F_X :

$$\lim_{n \to +\infty} F_{X_n}(x) = F_X(x).$$

Cas où les X_n et X prennent leurs valeurs dans \mathbb{Z}. La suite $(X_n)_{n \in \mathbb{N}^*}$ converge en loi vers X si et seulement si :

$$\forall k \in \mathbb{Z}, \quad \lim_{n \to +\infty} P([X_n = k]) = P([X = k]).$$

Convergence en loi d’une suite de variables aléatoires suivant la loi binomiale $B(n, \lambda/n)$ vers une variable aléatoire suivant la loi de Poisson de paramètre λ.

[end of document]
Thorme de Slutsky.

Si \((X_n)_{n \in \mathbb{N}}\) converge en loi vers \(X\) et si \((Y_n)_{n \in \mathbb{N}}\) converge en probabilité vers une constante \(c\), alors \((X_n + Y_n)_{n \in \mathbb{N}}\) converge en loi vers \(X + c\) et \((X_n Y_n)_{n \in \mathbb{N}}\) converge en loi vers \(cX\).

Résultats admis.

Composition par une fonction continue.

Si \((X_n)_{n \in \mathbb{N}}\) converge en loi vers \(X\) et si \(f\) est une fonction continue sur \(\mathbb{R}\) valeurs réelles, alors \((f(X_n))_{n \in \mathbb{N}}\) converge en loi vers \(f(X)\). Résultat admis.

Théorème limite central.

Si \((X_n)_{n \in \mathbb{N}}\) est une suite de variables aléatoires indépendantes et de même loi, admettant une espérance \(m\) et une variance \(\sigma^2\) non nulle, si on note : \(\overline{X}_n = \frac{X_1 + \ldots + X_n}{n}\), alors la suite de variables aléatoires centrées réduites \(\overline{X}_n^* = \sqrt{n} \left(\frac{\overline{X}_n - m}{\sigma}\right)\) converge en loi vers une variable aléatoire suivant la loi normale centrée réduite.

D'où, on a pour tout \((a, b)\) tel que \(-\infty \leq a \leq b \leq +\infty\) :

\[
\lim_{n \to +\infty} P([a \leq \overline{X}_n^* \leq b]) = \int_a^b \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{t^2}{2}\right) \, dt.
\]

Résultats admis.

Exemples d’approximations de la loi binomiale et de la loi de Poisson par la loi normale.

Résultats admis.

Toutes les indications devront être fournies aux candidats quant la justification de l’utilisation des approximations.

2 - Estimation - semaine 18

L’objectif de cette partie est d’introduire le vocabulaire et la démarche de la statistique inférentielle en abordant, sur quelques cas simples, le problème de l’estimation, ponctuelle ou par intervalle de confiance.
On se restreindra une famille de lois de probabilités indexées par un paramètre scalaire (ou vectoriel) dont la valeur (scalaire ou vectorielle) caractérise la loi. On cherche alors estimer la valeur du paramètre (ou une fonction simple de ce paramètre) partir des données disponibles.

Dans ce contexte, on considère un phénomène aléatoire et on s’intéresse à une variable aléatoire réelle X qui lui est liée, dont on suppose que la loi de probabilité n’est pas complètement spécifiée et appartient à une famille de lois dépendant d’un paramètre θ de \mathbb{R} (ventuellement de \mathbb{R}^2). Le paramètre θ est une quantité inconnue, fixée dans toute l’étude, que l’on cherche déterminer ou pour laquelle on cherche une information partielle.

Le problème de l’estimation consiste alors à estimer la vraie valeur du paramètre θ ou de $g(\theta)$ (fonction valeurs relles du paramètre θ), à partir d’un échantillon de données x_1, \ldots, x_n obtenues en observant n fois le phénomène. Cette fonction du paramètre représentera en général une valeur caractéristique de la loi inconnue comme son espérance, sa variance, son tendue...

On supposera que cet échantillon est la réalisation de n variables aléatoires X_1, \ldots, X_n définies sur un même espace probabilisable (Ω, \mathcal{A}) muni d’une famille de probabilités $(P_\theta)_{\theta \in \Theta}$. Les X_1, \ldots, X_n seront supposées P_θ-indépendantes et de même loi que X pour tout θ.

On appellera estimateur de $g(\theta)$ toute variable aléatoire réelle de la forme $\varphi(X_1, X_2, \ldots, X_n)$ où φ est une fonction de \mathbb{R}^n dans \mathbb{R}, ventuellement dépendante de n, et indépendante de θ, dont la réalisation après expérience est envisagé comme estimation de $g(\theta)$.

Si T_n est un estimateur, on notera, lorsque ces valeurs existent, $E_{\theta}(T_n)$ l’espérance de T_n et $V_{\theta}(T_n)$ la variance de T_n, pour la probabilité P_θ.

a) Estimation ponctuelle

Estimer ponctuellement $g(\theta)$ par $\varphi(x_1, \ldots, x_n)$ où $\varphi(X_1, X_2, \ldots, X_n)$ est un estimateur de $g(\theta)$ et (x_1, \ldots, x_n) est une réalisation de l’échantillon (X_1, \ldots, X_n), c’est décider d’accorder à $\varphi(x_1, \ldots, x_n)$ la valeur $\varphi(x_1, \ldots, x_n)$.

n-échantillon (X_1, \ldots, X_n) Exemples de n-échantillons as- de variables aléatoires relles sociés à une loi de Bernoulli indépendantes et de même loi $B(1, p)$ avec $\theta = p$. que X.
Definition d’un estimateur.
Un estimateur de $g(\theta)$ est une variable aléatoire de la forme $T_n = \varphi(X_1, \ldots, X_n)$. La réalisation $\varphi(x_1, \ldots, x_n)$ de l’estimateur T_n est l’estimation de $g(\theta)$. Cette estimation ne dépend que de l’échantillon (x_1, x_2, \ldots, x_n) observé.

Exemples simples d’estimateurs.
Exemple de la moyenne empirique $\bar{X} = \frac{X_1 + X_2 + \cdots + X_n}{n}$.

Biais d’un estimateur.
Si pour tout $\theta \in \Theta$, T_n admet une espérance, on appelle biais de T_n en $g(\theta)$ le réel $b_\theta(T_n) = E_\theta(T_n) - g(\theta)$.

Estimateur sans biais.
L’estimateur T_n de $g(\theta)$ est sans biais si pour tout $\theta \in \Theta$, $E_\theta(T_n) = g(\theta)$.

Suite $(T_n)_{n \geq 1}$ d’estimateurs.
Chaque T_n est de la forme $\varphi(X_1, X_2, \ldots, X_n)$.

Estimateur convergent.
Une suite d’estimateurs $(T_n)_{n \geq 1}$ de $g(\theta)$ est convergente si pour tout θ, la suite $(T_n)_{n \geq 1}$ converge en probabilité vers $g(\theta)$. Par abus de langage on dit aussi que l’estimateur est convergent.

Composition par une fonction continue.
Si $(T_n)_{n \geq 1}$ est une suite convergente d’estimateurs de $g(\theta)$ et si f est une fonction continue sur \mathbb{R} valeurs relles, alors $(f(T_n))_{n \geq 1}$ est une suite convergente d’estimateurs de $f(g(\theta))$.

Estimateur asymptotiquement sans biais.
Une suite $(T_n)_{n \geq 1}$ d’estimateurs de $g(\theta)$ est asymptotiquement sans biais si pour tout $\theta \in \Theta$,
\[
\lim_{n \to +\infty} E_\theta(T_n) = g(\theta).
\]

Risque quadratique d’un estimateur.
Si pour tout $\theta \in \Theta$, T_n admet un moment d’ordre 2, le risque quadratique de T_n en θ, noté $r_\theta(T_n)$, est le réel :
\[
r_\theta(T_n) = E_\theta((T_n - g(\theta))^2).
\]
Décomposition biais-variance du risque quadratique d’un estimateur.
Condition suffisante de convergence.

\[r_\theta(T_n) = b_\theta(T_n)^2 + V_\theta(T_n). \]

Si pour tout \(\theta \) de \(\Theta \),
\[\lim_{n \to +\infty} r_\theta(T_n) = 0, \]
a alors la suite d’estimateurs \((T_n)_{n \geq 1}\) de
\(g(\theta) \) est convergente.
Cette convergence pourra être étudiée à l’aide de l’inégalité de Markov.

b) Estimation par intervalle de confiance, intervalle de confiance asymptotique

S’il existe des critères pour juger des qualités d’un estimateur ponctuel \(T_n \) de \(g(\theta) \) (biais, risque, convergence), aucune certitude ne peut jamais être apportée quant au fait que l’estimation donne la vraie valeur à estimer.

La démarche de l’estimation par intervalle de confiance consiste à trouver un intervalle aléatoire qui contienne \(g(\theta) \) avec une probabilité minimale donnée. L’utilisation dans certains cas du thème limite central impose d’introduire la notion d’intervalle de confiance asymptotique.

Dans tout ce paragraphe \((U_n)_{n \geq 1}\) et \((V_n)_{n \geq 1}\) désigneront deux suites d’estimateurs de \(g(\theta) \) tels que pour tout \(\theta \in \Theta \) et pour tout \(n \geq 1 \),
\[P_\theta([U_n \leq V_n]) = 1. \]

Intervalle de confiance.

Soit \(\alpha \in [0, 1] \). \([U_n, V_n]\) est un intervalle de confiance de \(g(\theta) \) au niveau de confiance \(1 - \alpha \) si pour tout \(\theta \) de \(\Theta \),
\[P_\theta([U_n \leq g(\theta) \leq V_n]) \geq 1 - \alpha. \]
Sa réalisation est l’estimation de cet intervalle de confiance.
On distinguera probabilité et confiance et on éclairera ces notions à l’aide de simulations informatiques.
Intervalle de confiance asymptotique.

On appelle intervalle de confiance asymptotique de $g(\theta)$ au niveau de confiance $1 - \alpha$ une suite $([U_n, V_n])_{n \geq 1}$ vérifiant : pour tout θ de Θ, il existe une suite de rels (α_n) valeurs dans $[0,1]$, de limite α, telle que pour tout $n \geq 1$, $P_\theta([U_n \leq g(\theta) \leq V_n]) \geq 1 - \alpha_n$.
Par abus de langage on dit aussi que $[U_n, V_n]$ est un intervalle de confiance asymptotique.

Estimation par intervalle du paramètre d’une variable aléatoire de Bernoulli.

On pourra comparer, en majorant $p(1 - p)$ par $\frac{1}{4}$, les intervalles de confiance obtenus par l’inégalité de Bienaymé-Tchebychev, et les intervalles de confiance asymptotiques obtenus par l’approximation normale de la loi binomiale.

Estimation par intervalle de confiance de l’espérance d’une loi admettant un moment d’ordre 2.

On pourra démontrer ce résultat dans le cas d’une loi admettant un moment d’ordre 4 : dans ce cas, la suite $(S_n)_{n \geq 1}$ des cartes-types empiriques converge en probabilité vers l’empirique σ inconnu, ce qui permet d’utiliser le théorème de Slutsky pour remplacer σ par S_n afin d’obtenir une estimation par intervalle de confiance asymptotique de l’espérance de la loi.
Travaux pratiques en 2me année avec Scilab

En première année, les lycées ont acquis les bases de manipulation du logiciel Scilab. L’objectif de l’enseignement d’informatique de seconde année est de permettre aux télédiaugts d’utiliser Scilab de manière judicieuse et autonome pour illustrer ou modéliser des situations concrètes en mobilisant leurs connaissances mathématiques.

Les heures de travaux pratiques de mathmatiques avec Scilab peuvent être organisées sous différentes formes selon les contenus enseignés ; certaines sashes, notamment celles nécessitant peu de manipulations logicielles de part des télédiaugts, pourront avoir lieu en classe entière, les autres sashes en groupes rduits.

Le programme d’informatique s’articule autour de six thèmes : statistiques descriptives univariées, statistiques descriptives bivariées, chaînes de Markov, fonctions de plusieurs variables, simulation de lois, estimation ponctuelle ou par intervalle de confiance.

L’ordre dans lequel les thèmes sont abordés est libre, mais il est préférable de mener ces activités en cohérence avec la progression du cours de mathmatiques.

Dans certains thèmes, il s’avérera nécessaire d’introduire de nouvelles notions ou approches mathématiques. Celles-ci devront être explicites en prambule des sashes d’informatique et ne pourront en aucun cas être exigibles des télédiaugts. Certaines seront propres à un thème particulier, d’autres (comme par exemple les méthodes de Monte-Carlo) pourront au contraire être envisagés de manière transversale. Toutes les précisions nécessaires devront toujours être données lors de leur utilisation.

et vitent d’avoir connatre par cœur la syntaxe de commandes complexes.

L’objectif de ces travaux pratiques n’est pas l’écriture de longs programmes mais l’assimilation de savoir-faire et de compétences spécifiques dans la liste des exigibles et rappels en prambule de chaque thème.

Les exemples traits dans un thème devront être tirés, autant que possible, de situations réelles (traitement de données économiques, sociologiques, historiques, démographiques, en lien avec le monde de l’entreprise ou de la finance, etc), en faisant de que possible un rapprochement avec les autres disciplines.

I - Liste des exigibles

1 - Savoir-faire et compétences

C1 : Produire et interpréter des séries numériques et graphiques d’une série statistique (simple, double) ou d’une loi.

C2 : Modéliser et simuler des phénomènes (aléatoires ou déterministes) et les traduire en langage mathématique.

C3 : Représenter et exploiter le graphe d’une fonction d’une, deux ou trois variables.

C4 : Représenter et interpréter les différentes convergences.

C5 : Utiliser bon esprit la méthode de Monte-Carlo.

C6 : Porter un regard critique sur les méthodes d’estimation et de simulation.

2 - Nouvelles commandes

Toutes les commandes du programme de première année sont exigibles. Les seules nouvelles commandes exigibles des candidats sont indiquées dans ce paragraphe.

La connaissance des commandes suivantes ainsi que de leurs arguments est exigible des candidats :

\texttt{sum}, \texttt{cumsum}, \texttt{mean}, \texttt{max}, \texttt{min}, \texttt{zeros}, \texttt{ones}, \texttt{eye}, \texttt{spec}.

Les commandes suivantes devront avoir été manipulées par les étudiants mais la connaissance détaillée de leurs arguments n’est pas exigible des candidats :

\texttt{cdflnor}, \texttt{plot2d}, \texttt{fplot2d}, \texttt{plot3d}, \texttt{fplot3d}.
II - Liste des thèmes

1 - Statistiques descriptives univariées

(Dure indicative : 3 heures. Comptences développées : C1 et C6)

Dans ce paragraphe, on analysera des données statistiques, en insistant sur les représentations graphiques. On insistera sur le rôle des différents indicateurs de position et de dispersion tudies.

Série statistique associée un chantillon.
Effectifs, fréquences, fréquences cumulées, diagrammes en btons, histogrammes.
Indicateurs de position : moyenne, médiane, mode, quantiles.
Indicateurs de dispersion : tendue, variance et cart-type empiriques, cart inter-quantile.

On pourra galement utiliser les commandes : dsearch, tabul, pie stdeviation, median.

2 - Statistiques descriptives bivariées

(Dure indicative : 3 heures. Comptences développées : C1 et C6)

Série statistique deux variables, nuage de points associé.
Point moyen (\bar{x}, \bar{y}) du nuage.
Covariance et coefficient de corrélation empiriques, droites de régression.
On tracera le nuage de points et les droites de régression et on pourra effectuer des pr-transformation pour se râferner au cas linéaire.
On différenciera les variables explicatives des variables expliquer. On pourra utiliser les commandes : stdeviation, corr.

3 - chaines de Markov

(Dure indicative : 6 heures. Comptences développées : C2 et C4)

Ce thème sera l’occasion de revoir les simulations de lois discrètes tudies en première année ainsi que d’appliquer les résultats et techniques d’algèbre linéaire tudies au troisième semestre.
Matrice de transition.
Étude sur des exemples simples.
Comportement limite.

On pourra tudier par exemple l’indice de popularité d’une page Web (PageRank), modéliser l’évolution sociologique d’une société (passage d’individus d’une classe sociale une autre) ou les systèmes de bonus-malus en assurances. Simulation et mise en vidence d’états stables avec la commande `grand(n, 'markov', M, x0)`.

4 - Fonctions de plusieurs variables

(Dure indicative : 3 heures. Comptences développées : C2 et C3)

Graphe d’une fonction de deux variables, lignes de niveau, plan affine tangent au graphe. Drives partielles et drives directionnelles, représentation du gradient.

À cette occasion, on pourra mettre en vidence l’orthogonalité du gradient avec les courbes de niveau d’une fonction de deux variables.
Programmation de fonctions variables permettant de mettre en vidence les notions d’extrema locaux ou globaux, avec ou sans contrainte. On pourra prendre des exemples issus de l’économie ou de la finance : minimisation du risque, maximisation du gain, etc.

5 - Simulation de lois

(Dure indicative : 6 heures. Comptences développées : C1, C2, C3 et C6)

Dans toutes les simulations effectues, on pourra comparer les chantillons obtenus avec les distributions théoriques, en utilisant des diagrammes en bâtons et des histogrammes. On pourra aussi tracer la fonction de partition empirique et la comparer la fonction de partition théorique.
Méthode d’inversion.

Application de la méthode d’inversion pour la simulation par exemple des lois exponentielles ou de Cauchy. On pourra mettre en évidence grâce aux simulations, qu’une variable aléatoire suivant une loi de Cauchy n’admet pas d’espérance.

Méthodes de simulation d’une loi géométrique.

Utilisation d’une loi de Bernoulli et d’une boucle while, utilisation d’une loi exponentielle et de la fonction floor, utilisation du générateur grand.

Simulations informatiques d’une loi normale par utilisation du théorème limite central appliquant différentes lois.

Comparaison entre différentes méthodes de simulation d’une loi normale. On pourra s’intéresser au cas particulier de 12 variables aléatoires indépendantes suivant une même loi uniforme.

Simulations de variables aléatoires discrètes et densité varie.

On pourra faire le lien entre les lois exponentielles, les lois γ et de Poisson en modélisant des temps d’attente.

6 - Estimation ponctuelle et par intervalle de confiance

(Dure indicative : 6 heures. Comptences développées : C2, C4, C5 et C6)
Méthode de Monte-Carlo : principe, garanties d’approximation.

Cette méthode permet d’estimer des quantités qu’il est difficile de calculer explicitement mais qu’il est facile d’approcher par simulation (probabilités d’événements, esprances de variables alatoires).
Ainsi, on pourra estimer par exemple les valeurs prises par la fonction de répartition de la somme ou du produit de deux variables alatoires, ou encore, estimer le niveau rel. rang n fini, d’intervalles de confiance asymptotiques.
On pourra utiliser des données issues de situations relatives ou créer plusieurs jeux de données obtenues grâce la commande grand. Dans ce dernier cas, on pourra comparer les lois des estimateurs par exemple à l’aide d’histogrammes.

Comparaison de différents estimateurs ponctuels d’un paramètre.

Estimation par intervalle de confiance du paramètre d’une loi de Bernoulli et de l’esprance d’une loi normale.
La comparaison pourra se faire en calculant les demi-largeurs moyennes des intervalles et leurs niveaux de confiance.

Comparaison des intervalles de confiance d’un paramètre obtenus par différentes méthodes.